Corr2Odds {mipfp} | R Documentation |
Converting correlation to odds ratio
Description
For K
binary (Bernoulli) random variables
X_1
, ..., X_K
, this function transforms the correlation
measure of association C_{ij}
between every pair
(X_i, X_j)
to the odds ratio O_{ij}
where
C_{ij} = \frac{cov(X_i, X_j)}{\sqrt{var(X_i) * var(X_j)}}
and
O_{ij} = \frac{P(X_i = 1, X_j = 1) * P(X_i = 0, X_j = 0)}
{P(X_i = 1, X_j = 0) * P(X_i = 0, X_j = 1)}.
Usage
Corr2Odds(corr, marg.probs)
Arguments
corr |
A |
marg.probs |
A vector with |
Value
The function return a list with the correlations and the pairwise probabilities.
odds |
A matrix of the same dimension as |
pair.proba |
A matrix of the same dimension as |
Author(s)
Thomas Suesse.
Maintainer: Johan Barthelemy johan@uow.edu.au.
References
Lee, A.J. (1993). Generating Random Binary Deviates Having Fixed Marginal Distributions and Specified Degrees of Association The American Statistician 47 (3): 209-215.
Qaqish, B. F., Zink, R. C., and Preisser, J. S. (2012). Orthogonalized residuals for estimation of marginally specified association parameters in multivariate binary data. Scandinavian Journal of Statistics 39, 515-527.
See Also
Corr2Odds
for converting correlation to odds
ratio.
Examples
# correlation matrix from Qaqish et al. (2012)
cr <- matrix(c( 1.000, -0.215, 0.144, 0.107,
-0.215, 1.000, 0.184, 0.144,
0.144, 0.184, 1.000, 0.156,
0.107, 0.144, 0.156, 1.000), nrow = 4, ncol = 4, byrow = TRUE)
rownames(cr) <- colnames(cr) <- c("Parent1", "Parent2", "Sibling1", "Sibling2")
# hypothetical marginal probabilities
p <- c(0.2, 0.4, 0.6, 0.8)
# converting correlation to odds ratio and getting pairwise probabilities
or <- Corr2Odds(corr = cr, marg.probs = p)
print(or)