pool_scalar_RR {miceafter} | R Documentation |
Rubin's Rules for scalar estimates
Description
pool_scalar_RR
Applies Rubin's pooling Rules for scalar
estimates
Usage
pool_scalar_RR(
est,
se,
logit_trans = FALSE,
conf.level = 0.95,
statistic = FALSE,
dfcom = NULL,
df_small = TRUE,
approxim = "tdistr"
)
Arguments
est |
a numerical vector of parameter estimates. |
se |
a numerical vector of standard error estimates. |
logit_trans |
If TRUE logit transformation of parameter values is applied before pooling, if FALSE (default), pooling is done on the original parameter scale. |
conf.level |
Confidence level of the confidence intervals. |
statistic |
if TRUE the test statistic and confidence interval are provided, if FALSE (default) these are not shown. |
dfcom |
The complete data analysis degrees of freedom. |
df_small |
if TRUE (default) the (Barnard & Rubin) small sample correction for the degrees of freedom is applied, if FALSE the old number of degrees of freedom is calculated. |
approxim |
if "tdistr" a t-distribution is used (default), if "zdistr" a z-distribution is used to derive a p-value according to the test statistic. |
Details
The t-value is the quantile value of the t-distribution that can
be used to calculate confidence intervals according to
est_{pooled} +/- t_{1-\alpha/2} * se_{pooled}
. When statistic is
TRUE the test statistic is calculated as
statistic = est{pooled}/se{pooled}
. The p-value is than
derived using the t-distribution and adjusted degrees of freedom.
Value
A list object from which the following objects are extracted:
-
pool_est
the pooled parameter value. -
pool_se
the pooled standard error value. -
t
quantile of the t-distribution (to calculate confidence intervals). -
r
the relative increase in variance due to missing data. -
dfcom
complete data degrees of freedom. -
v_adj
adjusted degrees of freedom (according to Barnard and Rubin 1999)
Author(s)
Martijn Heymans, 2021
Examples
est <- c(0.4, 0.6, 0.8)
se <- c(0.02, 0.05, 0.03)
res <- pool_scalar_RR(est, se, dfcom=500)
res