contourmggd {mggd} | R Documentation |
Contour Plot of the Bivariate Generalised Gaussian Density
Description
Draws the contour plot of the probability density of the generalised Gaussian distribution with 2 variables
with mean vector mu
, dispersion matrix Sigma
and shape parameter beta
.
Usage
contourmggd(mu, Sigma, beta,
xlim = c(mu[1] + c(-10, 10)*Sigma[1, 1]),
ylim = c(mu[2] + c(-10, 10)*Sigma[2, 2]),
zlim = NULL, npt = 30, nx = npt, ny = npt,
main = "Multivariate generalised Gaussian density",
sub = NULL, nlevels = 10,
levels = pretty(zlim, nlevels), tol = 1e-6, ...)
Arguments
mu |
length 2 numeric vector. |
Sigma |
symmetric, positive-definite square matrix of order 2. The dispersion matrix. |
beta |
positive real number. The shape of the first distribution. |
xlim , ylim |
x-and y- limits. |
zlim |
z- limits. If NULL, it is the range of the values of the density on the x and y values within |
npt |
number of points for the discretisation. |
nx , ny |
number of points for the discretisation among the x- and y- axes. |
main , sub |
main and sub title, as for |
nlevels , levels |
arguments to be passed to the |
tol |
tolerance (relative to largest variance) for numerical lack of positive-definiteness in Sigma, for the estimation of the density. see |
... |
additional arguments to |
Value
Returns invisibly the probability density function.
Author(s)
Pierre Santagostini, Nizar Bouhlel
References
E. Gomez, M. Gomez-Villegas, H. Marin. A Multivariate Generalization of the Power Exponential Family of Distribution. Commun. Statist. 1998, Theory Methods, col. 27, no. 23, p 589-600. doi:10.1080/03610929808832115
See Also
plotmggd
: plot of a bivariate generalised Gaussian density.
dmggd
: Probability density of a multivariate generalised Gaussian distribution.
Examples
mu <- c(1, 4)
Sigma <- matrix(c(0.8, 0.2, 0.2, 0.2), nrow = 2)
beta <- 0.74
contourmggd(mu, Sigma, beta)