zoom.qqGam {mgcViz} | R Documentation |
Efficiently zooming on GAM QQ-plots
Description
This function allows to zoom into a QQ-plot produced by qq.gamViz, in a computationally efficient manner.
Usage
## S3 method for class 'qqGam'
zoom(
o,
xlim = NULL,
ylim = NULL,
discrete = NULL,
ngr = 1000,
adGrid = TRUE,
CI = FALSE,
worm = FALSE,
showReps = FALSE,
a.qqpoi = list(),
a.ablin = list(),
a.cipoly = list(),
a.replin = list(),
...
)
Arguments
o |
the output of |
xlim |
if supplied then this pair of numbers are used as the x limits for the plot. |
ylim |
if supplied then this pair of numbers are used as the y limits for the plot. |
discrete |
if |
ngr |
number of bins to be used in the discretization. |
adGrid |
if |
CI |
if |
worm |
if |
showReps |
if |
a.qqpoi |
list of arguments to be passed to |
a.ablin |
list of arguments to be passed to |
a.cipoly |
list of arguments to be passed to |
a.replin |
list of arguments to be passed to |
... |
currently unused. |
Examples
library(mgcViz);
set.seed(0)
n.samp <- 500
dat <- gamSim(1,n=n.samp,dist="binary",scale=.33)
p <- binomial()$linkinv(dat$f) ## binomial p
n <- sample(c(1,3),n.samp,replace=TRUE) ## binomial n
dat$y <- rbinom(n,n,p)
dat$n <- n
lr.fit <- bam(y/n ~ s(x0) + s(x1) + s(x2) + s(x3)
, family = binomial, data = dat,
weights = n, method = "REML")
lr.fit <- getViz(lr.fit)
set.seed(414)
o <- qq(lr.fit, rep = 50, method = "simul1", CI = "normal")
o # This is the whole qqplot
# We can zoom in along x at little extra costs (most computation already done by qq.gamViz)
zoom(o, xlim = c(0, 1), showReps = TRUE,
a.replin = list(alpha = 0.1), a.qqpoi = list(shape = 19))