pterm {mgcViz} | R Documentation |
Extracting parametric effects from a GAM model
Description
This function can be used to extract a parametric effect from an object of
class gamViz
.
Usage
pterm(o, select)
Arguments
o |
an object of class |
select |
index of the selected parametric effect. |
Value
An object of class "pTermSomething" where "Something" is substituted with
the class of the variable of interest. For instance if this "numeric", the pterm
will return an object of class "ptermNumeric".
Examples
####### 1. Gaussian GAM
library(mgcViz)
set.seed(3)
dat <- gamSim(1,n=1500,dist="normal",scale=20)
dat$fac <- as.factor( sample(c("A1", "A2", "A3"), nrow(dat), replace = TRUE) )
dat$logi <- as.logical( sample(c(TRUE, FALSE), nrow(dat), replace = TRUE) )
bs <- "cr"; k <- 12
b <- gam(y ~ x0 + x1 + I(x1^2) + s(x2,bs=bs,k=k) + fac + x3:fac + I(x1*x2) + logi,data=dat)
o <- getViz(b)
# Plot effect of 'x0'
pt <- pterm(o, 1)
plot(pt, n = 60) + l_ciPoly() + l_fitLine() + l_ciLine() + l_points()
# Plot effect of 'x3'
pt <- pterm(o, 1)
plot(pt, n = 60) + l_fitLine() + l_ciLine(colour = 2)
# Plot effect of 'fac'
pt <- pterm(o, 4)
plot(pt) + l_ciBar(colour = "blue") + l_fitPoints(colour = "red") +
l_rug(alpha = 0.3)
# Plot effect of 'logi'
pt <- pterm(o, 6)
plot(pt) + l_fitBar(a.aes = list(fill = I("light blue"))) + l_ciBar(colour = "blue")
# Plot effect of 'x3:fac': no method available yet available for second order terms
pt <- pterm(o, 7)
plot(pt)
## Not run:
####### 1. Continued: Quantile GAMs
b <- mqgamV(y ~ x0 + x1 + I(x1^2) + s(x2,bs=bs,k=k) + x3:fac +
I(x1*x2) + logi, data=dat, qu = c(0.3, 0.5, 0.8))
plot(pterm(b, 3)) + l_ciBar(colour = 2) + l_fitPoints()
plot(pterm(b, 4)) + l_fitBar(colour = "blue", fill = 3) + l_ciBar(colour = 2)
# Don't know how to plot this interaction
plot(pterm(b, 6))
####### 2. Gaussian GAMLSS model
library(MASS)
mcycle$fac <- as.factor( sample(c("z", "k", "a", "f"), nrow(mcycle), replace = TRUE) )
b <- gam(list(accel~times + I(times^2) + s(times,k=10), ~ times + fac + s(times)),
data=mcycle,family=gaulss(), optimizer = "efs")
o <- getViz(b)
# Plot effect of 'I(times^2)' on mean: notice that partial residuals
# are unavailable for GAMLSS models, hence l_point does not do anything here.
pt <- pterm(o, 2)
plot(pt) + l_ciPoly() + l_fitLine() + l_ciLine() + l_points()
# Plot effect of 'times' in second linear predictor.
# Notice that partial residuals are unavailable.
pt <- pterm(o, 3)
plot(pt) + l_ciPoly() + l_fitLine() + l_ciLine(linetype = 3) + l_rug()
# Plot effect of 'fac' in second linear predictor.
pt <- pterm(o, 4)
plot(pt) + l_ciBar(colour = "blue") + l_fitPoints(colour = "red") +
l_rug()
## End(Not run)
[Package mgcViz version 0.1.11 Index]