paretores {mfpp} | R Documentation |
Calculate Pareto-optimal resource allocation
Description
Calculate Pareto-optimal resource allocation
Usage
paretores(DSM,TD,RD)
Arguments
DSM |
An N by N upper triangular adjacency matrix of logic network with fixed dependencies (a binary matrix). |
TD |
N by 1 matrix of task durations (a numeric matrix) |
RD |
N by r matrix of task resources, where the number of resources is r. |
Value
RD |
Pareto-optimal TPR (1 by r numeric vector)). |
SST |
Scheduled Start Time (N by N numeric matrix)). |
Author(s)
Zsolt T. Kosztyan*, Aamir Saghir
e-mail: kzst@gtk.uni-pannon.hu
References
KosztyƔn, Z. T. (2022). MFPP: Matrix-based flexible project planning. SoftwareX, 17, 100973.
See Also
Examples
# Calculation of Pareto-optimal resource allocation using MFPP package.
# Define a 3 by 3 upper traingular logic domain of a project structure.
# Specification of Logic Domain
DSM<-matrix(c(1,1,0,1,0,0,
0,1,0,0,0,0,
0,0,1,1,0,0,
0,0,0,1,0,0,
0,0,0,0,0,0,
0,0,0,0,0,0),nrow=6, byrow=TRUE)
# Specification of Time Domain
TD<-matrix(c(2,
3,
1,
4,
0,
0),nrow=6, byrow=TRUE)
# Specification of Resource Domain
RD<-matrix(c(4,2,
3,2,
5,1,
6,4,
0,0,
0,0),nrow=6, byrow=TRUE)
RES<-paretores(DSM,TD,RD)
RES
# Verify results
tpr(RES$SST,DSM,TD,RD)
[Package mfpp version 0.0.7 Index]