sim.cif {mets} | R Documentation |
Simulation of output from Cumulative incidence regression model
Description
Simulates data that looks like fit from fitted cumulative incidence model
Usage
sim.cif(cif,n,data=NULL,Z=NULL,drawZ=TRUE,cens=NULL,rrc=NULL,cumstart=c(0,0),...)
Arguments
cif |
output form prop.odds.subdist or ccr (cmprsk), can also call invsubdist with with cumulative and linear predictor |
n |
number of simulations. |
data |
to extract covariates for simulations (draws from observed covariates). |
Z |
to use these covariates for simulation rather than drawing new ones. |
drawZ |
to random sample from Z or not |
cens |
specifies censoring model, if "is.matrix" then uses cumulative hazard given, if "is.scalar" then uses rate for exponential, and if not given then takes average rate of in simulated data from cox model. |
rrc |
possible vector of relative risk for cox-type censoring. |
cumstart |
to start cumulatives at time 0 in 0. |
... |
arguments for invsubdist |
Author(s)
Thomas Scheike
Examples
data(bmt)
scif <- cifreg(Event(time,cause)~tcell+platelet+age,data=bmt,cause=1,prop=NULL)
summary(scif)
plot(scif)
################################################################
# simulating several causes with specific cumulatives
################################################################
cif1 <- cifreg(Event(time,cause)~tcell+age,data=bmt,cause=1,prop=NULL)
cif2 <- cifreg(Event(time,cause)~tcell+age,data=bmt,cause=2,prop=NULL)
# dd <- sim.cifsRestrict(list(cif1,cif2),200,data=bmt)
dd <- sim.cifs(list(cif1,cif2),200,data=bmt)
scif1 <- cifreg(Event(time,cause)~tcell+age,data=dd,cause=1)
scif2 <- cifreg(Event(time,cause)~tcell+age,data=dd,cause=2)
par(mfrow=c(1,2))
plot(cif1); plot(scif1,add=TRUE,col=2)
plot(cif2); plot(scif2,add=TRUE,col=2)
[Package mets version 1.3.4 Index]