mlogit {mets} | R Documentation |
Multinomial regression based on phreg regression
Description
Fits multinomial regression model
for
where
, such that
using phreg function. Thefore the ratio
Usage
mlogit(formula, data, offset = NULL, weights = NULL, fix.X = FALSE, ...)
Arguments
formula |
formula with outcome (see |
data |
data frame |
offset |
offsets for partial likelihood |
weights |
for score equations |
fix.X |
to have same coefficients for all categories |
... |
Additional arguments to lower level funtions |
Details
Coefficients give log-Relative-Risk relative to baseline group (first level of factor, so that it can reset by relevel command). Standard errors computed based on sandwhich form
.
Can also get influence functions (possibly robust) via iid() function, response should be a factor.
Can fit cumulative odds model as a special case of interval.logitsurv.discrete
Author(s)
Thomas Scheike
Examples
data(bmt)
dfactor(bmt) <- cause1f~cause
drelevel(bmt,ref=3) <- cause3f~cause
dlevels(bmt)
mreg <- mlogit(cause1f~+1,bmt)
summary(mreg)
mreg <- mlogit(cause1f~tcell+platelet,bmt)
summary(mreg)
mreg3 <- mlogit(cause3f~tcell+platelet,bmt)
summary(mreg3)
## inverse information standard errors
lava::estimate(coef=mreg3$coef,vcov=mreg3$II)
## predictions based on seen response or not
newdata <- data.frame(tcell=c(1,1,1),platelet=c(0,1,1),cause1f=c("2","1","0"))
predictmlogit(mreg,newdata,response=FALSE)
predictmlogit(mreg,newdata)
[Package mets version 1.3.4 Index]