ipw {mets} | R Documentation |
Inverse Probability of Censoring Weights
Description
Internal function. Calculates Inverse Probability of Censoring Weights (IPCW) and adds them to a data.frame
Usage
ipw(
formula,
data,
cluster,
same.cens = FALSE,
obs.only = FALSE,
weight.name = "w",
trunc.prob = FALSE,
weight.name2 = "wt",
indi.weight = "pr",
cens.model = "aalen",
pairs = FALSE,
theta.formula = ~1,
...
)
Arguments
formula |
Formula specifying the censoring model |
data |
data frame |
cluster |
clustering variable |
same.cens |
For clustered data, should same censoring be assumed (bivariate probability calculated as mininum of the marginal probabilities) |
obs.only |
Return data with uncensored observations only |
weight.name |
Name of weight variable in the new data.frame |
trunc.prob |
If TRUE truncation probabilities are also calculated and stored in 'weight.name2' (based on Clayton-Oakes gamma frailty model) |
weight.name2 |
Name of truncation probabilities |
indi.weight |
Name of individual censoring weight in the new data.frame |
cens.model |
Censoring model (default Aalens additive model) |
pairs |
For paired data (e.g. twins) only the complete pairs are returned (With pairs=TRUE) |
theta.formula |
Model for the dependence parameter in the Clayton-Oakes model (truncation only) |
... |
Additional arguments to censoring model |
Author(s)
Klaus K. Holst
Examples
## Not run:
data("prt",package="mets")
prtw <- ipw(Surv(time,status==0)~country, data=prt[sample(nrow(prt),5000),],
cluster="id",weight.name="w")
plot(0,type="n",xlim=range(prtw$time),ylim=c(0,1),xlab="Age",ylab="Probability")
count <- 0
for (l in unique(prtw$country)) {
count <- count+1
prtw <- prtw[order(prtw$time),]
with(subset(prtw,country==l),
lines(time,w,col=count,lwd=2))
}
legend("topright",legend=unique(prtw$country),col=1:4,pch=-1,lty=1)
## End(Not run)