interval.logitsurv.discrete {mets} | R Documentation |
Discrete time to event interval censored data
Description
logit(P(T >t | x)) = log(G(t)) + x \beta
P(T >t | x) = \frac{1}{1 + G(t) exp( x \beta) }
Usage
interval.logitsurv.discrete(
formula,
data,
beta = NULL,
no.opt = FALSE,
method = "NR",
stderr = TRUE,
weights = NULL,
offsets = NULL,
exp.link = 1,
increment = 1,
...
)
Arguments
formula |
formula |
data |
data |
beta |
starting values |
no.opt |
optimization TRUE/FALSE |
method |
NR, nlm |
stderr |
to return only estimate |
weights |
weights following id for GLM |
offsets |
following id for GLM |
exp.link |
parametrize increments exp(alpha) > 0 |
increment |
using increments dG(t)=exp(alpha) as parameters |
... |
Additional arguments to lower level funtions lava::NR optimizer or nlm |
Details
This is thus also the cumulative odds model, since
P(T \leq t | x) = \frac{G(t) \exp(x \beta) }{1 + G(t) exp( x \beta) }
The baseline G(t)
is written as cumsum(exp(\alpha))
and this is not the standard
parametrization that takes log of G(t)
as the parameters.
Input are intervals given by ]t_l,t_r] where t_r can be infinity for right-censored intervals When truly discrete ]0,1] will be an observation at 1, and ]j,j+1] will be an observation at j+1
Likelihood is maximized:
\prod P(T_i >t_{il} | x) - P(T_i> t_{ir}| x)
Author(s)
Thomas Scheike
Examples
data(ttpd)
dtable(ttpd,~entry+time2)
out <- interval.logitsurv.discrete(Interval(entry,time2)~X1+X2+X3+X4,ttpd)
summary(out)
pred <- predictlogitSurvd(out,se=FALSE)
plotSurvd(pred)