gof.phreg {mets} | R Documentation |
GOF for Cox PH regression
Description
Cumulative score process residuals for Cox PH regression p-values based on Lin, Wei, Ying resampling.
Usage
## S3 method for class 'phreg'
gof(object, n.sim = 1000, silent = 1, robust = NULL, ...)
Arguments
object |
is phreg object |
n.sim |
number of simulations for score processes |
silent |
to show timing estimate will be produced for longer jobs |
robust |
to control wether robust dM_i(t) or dN_i are used for simulations |
... |
Additional arguments to lower level funtions |
Author(s)
Thomas Scheike and Klaus K. Holst
Examples
library(mets)
data(sTRACE)
m1 <- phreg(Surv(time,status==9)~vf+chf+diabetes,data=sTRACE)
gg <- gof(m1)
gg
par(mfrow=c(1,3))
plot(gg)
m1 <- phreg(Surv(time,status==9)~strata(vf)+chf+diabetes,data=sTRACE)
## to get Martingale ~ dN based simulations
gg <- gof(m1)
gg
## to get Martingale robust simulations, specify cluster in call
sTRACE$id <- 1:500
m1 <- phreg(Surv(time,status==9)~vf+chf+diabetes+cluster(id),data=sTRACE)
gg <- gof(m1)
gg
m1 <- phreg(Surv(time,status==9)~strata(vf)+chf+diabetes+cluster(id),data=sTRACE)
gg <- gof(m1)
gg
[Package mets version 1.3.4 Index]