cor.cif {mets} | R Documentation |
Cross-odds-ratio, OR or RR risk regression for competing risks
Description
Fits a parametric model for the log-cross-odds-ratio for the
predictive effect of for the cumulative incidence curves for
experiencing cause i given that
has experienced a cause k :
with the log cross odds ratio being
the conditional odds divided by the unconditional odds, with the odds being, respectively
and
Here is the complement event of
,
is the distribution given covariates
(
are subject specific and
are cluster specific covariates), and
is a function that is the simple identity
by default.
Usage
cor.cif(
cif,
data,
cause = NULL,
times = NULL,
cause1 = 1,
cause2 = 1,
cens.code = NULL,
cens.model = "KM",
Nit = 40,
detail = 0,
clusters = NULL,
theta = NULL,
theta.des = NULL,
step = 1,
sym = 0,
weights = NULL,
par.func = NULL,
dpar.func = NULL,
dimpar = NULL,
score.method = "nlminb",
same.cens = FALSE,
censoring.weights = NULL,
silent = 1,
...
)
Arguments
cif |
a model object from the timereg::comp.risk function with the marginal cumulative incidence of cause1, i.e., the event of interest, and whose odds the comparision is compared to the conditional odds given cause2 |
data |
a data.frame with the variables. |
cause |
specifies the causes related to the death times, the value cens.code is the censoring value. When missing it comes from marginal cif. |
times |
time-vector that specifies the times used for the estimating euqations for the cross-odds-ratio estimation. |
cause1 |
specificies the cause considered. |
cause2 |
specificies the cause that is conditioned on. |
cens.code |
specificies the code for the censoring if NULL then uses the one from the marginal cif model. |
cens.model |
specified which model to use for the ICPW, KM is Kaplan-Meier alternatively it may be "cox" |
Nit |
number of iterations for Newton-Raphson algorithm. |
detail |
if 0 no details are printed during iterations, if 1 details are given. |
clusters |
specifies the cluster structure. |
theta |
specifies starting values for the cross-odds-ratio parameters of the model. |
theta.des |
specifies a regression design for the cross-odds-ratio parameters. |
step |
specifies the step size for the Newton-Raphson algorithm. |
sym |
specifies if symmetry is used in the model. |
weights |
weights for estimating equations. |
par.func |
parfunc |
dpar.func |
dparfunc |
dimpar |
dimpar |
score.method |
"nlminb", can also use "nr". |
same.cens |
if true then censoring within clusters are assumed to be the same variable, default is independent censoring. |
censoring.weights |
these probabilities are used for the bivariate censoring dist. |
silent |
1 to suppress output about convergence related issues. |
... |
Not used. |
Details
The OR dependence measure is given by
This measure is numerically more stabile than the COR measure, and is symetric in i,k.
The RR dependence measure is given by
This measure is numerically more stabile than the COR measure, and is symetric in i,k.
The model is fitted under symmetry (sym=1), i.e., such that it is assumed
that and
can be interchanged and leads to
the same cross-odd-ratio (i.e.
,
as would be expected for twins
or without symmetry as might be the case with mothers and daughters (sym=0).
may be specified as an R-function of the parameters,
see example below, but the default is that it is simply
.
Value
returns an object of type 'cor'. With the following arguments:
theta |
estimate of proportional odds parameters of model. |
var.theta |
variance for gamma. |
hess |
the derivative of the used score. |
score |
scores at final stage. |
score |
scores at final stage. |
theta.iid |
matrix of iid decomposition of parametric effects. |
Author(s)
Thomas Scheike
References
Cross odds ratio Modelling of dependence for Multivariate Competing Risks Data, Scheike and Sun (2012), Biostatistics.
A Semiparametric Random Effects Model for Multivariate Competing Risks Data, Scheike, Zhang, Sun, Jensen (2010), Biometrika.
Examples
library("timereg")
data(multcif);
multcif$cause[multcif$cause==0] <- 2
zyg <- rep(rbinom(200,1,0.5),each=2)
theta.des <- model.matrix(~-1+factor(zyg))
times=seq(0.05,1,by=0.05) # to speed up computations use only these time-points
add <- timereg::comp.risk(Event(time,cause)~+1+cluster(id),data=multcif,cause=1,
n.sim=0,times=times,model="fg",max.clust=NULL)
add2 <- timereg::comp.risk(Event(time,cause)~+1+cluster(id),data=multcif,cause=2,
n.sim=0,times=times,model="fg",max.clust=NULL)
out1 <- cor.cif(add,data=multcif,cause1=1,cause2=1)
summary(out1)
out2 <- cor.cif(add,data=multcif,cause1=1,cause2=1,theta.des=theta.des)
summary(out2)
##out3 <- cor.cif(add,data=multcif,cause1=1,cause2=2,cif2=add2)
##summary(out3)
###########################################################
# investigating further models using parfunc and dparfunc
###########################################################
## Reduce Ex.Timings
set.seed(100)
prt<-simnordic.random(2000,cordz=2,cormz=5)
prt$status <-prt$cause
table(prt$status)
times <- seq(40,100,by=10)
cifmod <- timereg::comp.risk(Event(time,cause)~+1+cluster(id),data=prt,
cause=1,n.sim=0,
times=times,conservative=1,max.clust=NULL,model="fg")
theta.des <- model.matrix(~-1+factor(zyg),data=prt)
parfunc <- function(par,t,pardes)
{
par <- pardes %*% c(par[1],par[2]) +
pardes %*% c( par[3]*(t-60)/12,par[4]*(t-60)/12)
par
}
head(parfunc(c(0.1,1,0.1,1),50,theta.des))
dparfunc <- function(par,t,pardes)
{
dpar <- cbind(pardes, t(t(pardes) * c( (t-60)/12,(t-60)/12)) )
dpar
}
head(dparfunc(c(0.1,1,0.1,1),50,theta.des))
names(prt)
or1 <- or.cif(cifmod,data=prt,cause1=1,cause2=1,theta.des=theta.des,
same.cens=TRUE,theta=c(0.6,1.1,0.1,0.1),
par.func=parfunc,dpar.func=dparfunc,dimpar=4,
score.method="nr",detail=1)
summary(or1)
cor1 <- cor.cif(cifmod,data=prt,cause1=1,cause2=1,theta.des=theta.des,
same.cens=TRUE,theta=c(0.5,1.0,0.1,0.1),
par.func=parfunc,dpar.func=dparfunc,dimpar=4,
control=list(trace=TRUE),detail=1)
summary(cor1)
### piecewise contant OR model
gparfunc <- function(par,t,pardes)
{
cuts <- c(0,80,90,120)
grop <- diff(t<cuts)
paru <- (pardes[,1]==1) * sum(grop*par[1:3]) +
(pardes[,2]==1) * sum(grop*par[4:6])
paru
}
dgparfunc <- function(par,t,pardes)
{
cuts <- c(0,80,90,120)
grop <- diff(t<cuts)
par1 <- matrix(c(grop),nrow(pardes),length(grop),byrow=TRUE)
parmz <- par1* (pardes[,1]==1)
pardz <- (pardes[,2]==1) * par1
dpar <- cbind( parmz,pardz)
dpar
}
head(dgparfunc(rep(0.1,6),50,theta.des))
head(gparfunc(rep(0.1,6),50,theta.des))
or1g <- or.cif(cifmod,data=prt,cause1=1,cause2=1,
theta.des=theta.des, same.cens=TRUE,
par.func=gparfunc,dpar.func=dgparfunc,
dimpar=6,score.method="nr",detail=1)
summary(or1g)
names(or1g)
head(or1g$theta.iid)