bmi {metrica} | R Documentation |
Bookmaker Informedness
Description
It estimates the Bookmaker Informedness (a.k.a. Youden's J-index) for a nominal/categorical predicted-observed dataset.
jindex
estimates the Youden's J statistic or
Youden's J Index (equivalent to Bookmaker Informedness bmi
)
Usage
bmi(
data = NULL,
obs,
pred,
pos_level = 2,
atom = FALSE,
tidy = FALSE,
na.rm = TRUE
)
jindex(
data = NULL,
obs,
pred,
pos_level = 2,
atom = FALSE,
tidy = FALSE,
na.rm = TRUE
)
Arguments
data |
(Optional) argument to call an existing data frame containing the data. |
obs |
Vector with observed values (character | factor). |
pred |
Vector with predicted values (character | factor). |
pos_level |
Integer, for binary cases, indicating the order (1|2) of the level
corresponding to the positive. Generally, the positive level is the second (2)
since following an alpha-numeric order, the most common pairs are
|
atom |
Logical operator (TRUE/FALSE) to decide if the estimate is made for each class (atom = TRUE) or at a global level (atom = FALSE); Default : FALSE. When dataset is "binomial" atom does not apply. |
tidy |
Logical operator (TRUE/FALSE) to decide the type of return. TRUE returns a data.frame, FALSE returns a list; Default : FALSE. |
na.rm |
Logic argument to remove rows with missing values (NA). Default is na.rm = TRUE. |
Details
The Bookmaker Informedness (or Youden's J index) it is a suitable metric when the number of cases for each class is uneven.
The general formula applied to both binary and multiclass cases is:
bmi = recall + specificity - 1
It is bounded between 0 and 1. The closer to 1 the better. Values towards zero indicate low performance. For the formula and more details, see online-documentation
Value
an object of class numeric
within a list
(if tidy = FALSE) or within a
data frame
(if tidy = TRUE).
References
Youden, W.J. (1950). Index for rating diagnostic tests. . Cancer 3: 32-35. doi:10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
Examples
set.seed(123)
# Two-class
binomial_case <- data.frame(labels = sample(c("True","False"), 100, replace = TRUE),
predictions = sample(c("True","False"), 100, replace = TRUE))
# Multi-class
multinomial_case <- data.frame(labels = sample(c("Red","Blue", "Green"), 100, replace = TRUE),
predictions = sample(c("Red","Blue", "Green"), 100, replace = TRUE) )
# Get Informedness estimate for two-class case
bmi(data = binomial_case, obs = labels, pred = predictions, tidy = TRUE)
# Get Informedness estimate for each class for the multi-class case
bmi(data = multinomial_case, obs = labels, pred = predictions, tidy = TRUE, atom = TRUE)
# Get Informedness estimate for the multi-class case at a global level
bmi(data = multinomial_case, obs = labels, pred = predictions, tidy = TRUE)