RSR {metrica} | R Documentation |
Root Mean Standard Deviation Ratio (RSR)
Description
It estimates the MSE normalized by the standard deviation of observed values following Moriasi et al. (2007).
Usage
RSR(data = NULL, obs, pred, tidy = FALSE, na.rm = TRUE)
Arguments
data |
(Optional) argument to call an existing data frame containing the data. |
obs |
Vector with observed values (numeric). |
pred |
Vector with predicted values (numeric). |
tidy |
Logical operator (TRUE/FALSE) to decide the type of return. TRUE returns a data.frame, FALSE returns a list; Default : FALSE. |
na.rm |
Logic argument to remove rows with missing values (NA). Default is na.rm = TRUE. |
Details
The RSR normalizes the Root Mean Squared Error (RMSE) using the standard deviation of observed values. It goes from an optimal value of 0 to infinity. Based on RSR, Moriasi et al. (2007) indicates performance ratings as: i) very-good (0-0.50), ii) good (0.50-0.60), iii) satisfactory (0.60-0.70), or iv) unsatisfactory (>0.70). For the formula and more details, see online-documentation
Value
an object of class numeric
within a list
(if tidy = FALSE) or within a
data frame
(if tidy = TRUE).
References
Moriasi et al. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 50, 885–900. doi:10.13031/2013.23153
Examples
set.seed(1)
X <- rnorm(n = 100, mean = 0, sd = 10)
Y <- X + rnorm(n=100, mean = 0, sd = 3)
RSR(obs = X, pred = Y)