RMAE {metrica} | R Documentation |
Relative Mean Absolute Error (RMAE)
Description
It estimates the RMAE for a continuous predicted-observed dataset.
Usage
RMAE(data = NULL, obs, pred, tidy = FALSE, na.rm = TRUE)
Arguments
data |
(Optional) argument to call an existing data frame containing the data. |
obs |
Vector with observed values (numeric). |
pred |
Vector with predicted values (numeric). |
tidy |
Logical operator (TRUE/FALSE) to decide the type of return. TRUE returns a data.frame, FALSE returns a list; Default : FALSE. |
na.rm |
Logic argument to remove rows with missing values (NA). Default is na.rm = TRUE. |
Details
The RMAE normalizes the Mean Absolute Error (MAE) by the mean of observations. The closer to zero the lower the prediction error. For the formula and more details, see online-documentation
Value
an object of class numeric
within a list
(if tidy = FALSE) or within a
data frame
(if tidy = TRUE).
Examples
set.seed(1)
X <- rnorm(n = 100, mean = 0, sd = 10)
Y <- X + rnorm(n=100, mean = 0, sd = 3)
RMAE(obs = X, pred = Y)
[Package metrica version 2.1.0 Index]