PLP {metrica} | R Documentation |
Percentage Lack of Precision (PLP)
Description
It estimates the PLP, the contribution of the unsystematic error to the Mean Squared Error (MSE) for a continuous predicted-observed dataset following Correndo et al. (2021).
Usage
PLP(data = NULL, obs, pred, tidy = FALSE, na.rm = TRUE)
Arguments
data |
(Optional) argument to call an existing data frame containing the data. |
obs |
Vector with observed values (numeric). |
pred |
Vector with predicted values (numeric). |
tidy |
Logical operator (TRUE/FALSE) to decide the type of return. TRUE returns a data.frame, FALSE returns a list; Default : FALSE. |
na.rm |
Logic argument to remove rows with missing values (NA). Default is na.rm = TRUE. |
Details
The PLP (%, 0-100) represents the contribution of the Mean Lack of Precision (MLP), the unsystematic (random) component of the MSE. It is obtained via a symmetric decomposition of the MSE (invariant to predicted-observed orientation). The greater the value the greater the contribution of unsystematic error to the MSE. For the formula and more details, see online-documentation
Value
an object of class numeric
within a list
(if tidy = FALSE) or within a
data frame
(if tidy = TRUE).
References
Correndo et al. (2021). Revisiting linear regression to test agreement in continuous predicted-observed datasets. Agric. Syst. 192, 103194. doi:10.1016/j.agsy.2021.103194
Examples
set.seed(1)
X <- rnorm(n = 100, mean = 0, sd = 10)
Y <- X + rnorm(n=100, mean = 0, sd = 3)
PLP(obs = X, pred = Y)