PBE {metrica} | R Documentation |
Percentage Bias Error (PBE).
Description
It estimates the PBE for a continuous predicted-observed dataset following Gupta et al. (1999).
Usage
PBE(data = NULL, obs, pred, tidy = FALSE, na.rm = TRUE)
Arguments
data |
(Optional) argument to call an existing data frame containing the data. |
obs |
Vector with observed values (numeric). |
pred |
Vector with predicted values (numeric). |
tidy |
Logical operator (TRUE/FALSE) to decide the type of return. TRUE returns a data.frame, FALSE returns a list; Default : FALSE. |
na.rm |
Logic argument to remove rows with missing values (NA). Default is na.rm = TRUE. |
Details
The PBE (%) is useful to identify systematic over or under predictions. It is an unbounded metric. The closer to zero the bias of predictions. Negative values indicate overestimation, while positive values indicate underestimation. For the formula and more details, see online-documentation
Value
an object of class numeric
within a list
(if tidy = FALSE) or within a
data frame
(if tidy = TRUE).
References
Gupta et al. (1999). Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. J. Hydrologic Eng. 4(2): 135-143. doi:10.1061/(ASCE)1084-0699(1999)4:2(135)
Examples
set.seed(1)
X <- rnorm(n = 100, mean = 0, sd = 10)
Y <- X + rnorm(n=100, mean = 0, sd = 3)
PBE(obs = X, pred = Y)