MAPE {metrica} | R Documentation |
Mean Absolute Percentage Error (MAPE)
Description
It estimates the MAPE of a continuous predicted-observed dataset.
Usage
MAPE(data = NULL, obs, pred, tidy = FALSE, na.rm = TRUE)
Arguments
data |
(optional) argument to call an existing data frame containing the data. |
obs |
Vector with observed values (numeric). |
pred |
Vector with predicted values (numeric). |
tidy |
Logical operator (TRUE/FALSE) to decide the type of return. TRUE returns a data.frame, FALSE returns a list; Default : FALSE. |
na.rm |
Logic argument to remove rows with missing values (NA). Default is na.rm = TRUE. |
Details
The MAPE is expressed in percentage units (independent scale), which it makes easy to explain and to compare performance across models with different response variables. MAPE is asymmetric (sensitive to axis orientation). The lower the better. As main disadvantage, MAPE produces infinite or undefined values for zero or close-to-zero observed values. For the formula and more details, see online-documentation
Value
an object of class numeric
within a list
(if tidy = FALSE) or within a
data frame
(if tidy = TRUE).
References
Kim & Kim (2016). A new metric of absolute percentage error for intermittent demand forecast. _Int. J. Forecast. 32, 669-679._doi:10.1016/j.ijforecast.2015.12.003
Examples
set.seed(1)
X <- rnorm(n = 100, mean = 0, sd = 10)
Y <- X + rnorm(n=100, mean = 0, sd = 3)
MAPE(obs = X, pred = Y)