meteESF {meteR} | R Documentation |
meteESF
Description
meteESF
Calculates the “ecosystem structure
function” R(n,\epsilon)
which forms the core of the Maximum Entropy Theory of
Ecology
Usage
meteESF(spp, abund, power, S0 = NULL, N0 = NULL, E0 = NULL, minE)
Arguments
spp |
A vector of species names |
abund |
A vector of abundances |
power |
A vector of metabolic rates |
S0 |
Total number of species |
N0 |
Total number of individuals |
E0 |
Total metabolic rate; defaults to N0*1e6 if not specified or
calculated from |
minE |
Minimum possible metabolic rate |
Details
Uses either data or state variables to calculate the Ecosystem Structure
Function (ESF). power
nor E0
need not be specified; if missing an arbitrarily
large value is assigned to E0 (N0*1e5) such that it will minimally affect
estimation of Lagrange multipliers. Consider using sensitivity analysis to
confirm this assumption. Examples show different ways of combining data and state
variables to specify constraints
Value
An object of class meteESF
with elements
data
The data used to construct the ESF
emin
The minimum metabolic rate used to rescale metabolic rates
La
Vector of Lagrange multipliers
La.info
Termination information from optimization procedure
state.var
State variables used to constrain entropy maximization
Z
Normalization constant for ESF
Author(s)
Andy Rominger <ajrominger@gmail.com>, Cory Merow
References
Harte, J. 2011. Maximum entropy and ecology: a theory of abundance, distribution, and energetics. Oxford University Press.
See Also
metePi
Examples
## case where complete data availible
esf1 <- meteESF(spp=arth$spp,
abund=arth$count,
power=arth$mass^(.75),
minE=min(arth$mass^(.75)))
esf1
## excluding metabolic rate data
esf2 <- meteESF(spp=arth$spp,
abund=arth$count)
esf2
## using state variables only
esf3 <- meteESF(S0=50, N0=500, E0=5000)
esf3
esf4 <- meteESF(S0=50, N0=500)
esf4