calc_n_samples {metacoder} | R Documentation |
Count the number of samples
Description
For a given table in a taxmap
object, count the number of
samples (i.e. columns) with greater than a minimum value.
Usage
calc_n_samples(
obj,
data,
cols = NULL,
groups = "n_samples",
other_cols = FALSE,
out_names = NULL,
drop = FALSE,
more_than = 0,
dataset = NULL
)
Arguments
obj |
A |
data |
The name of a table in |
cols |
The columns in
|
groups |
Group multiple columns per treatment/group. This should be a
vector of group IDs (e.g. character, integer) the same length as
|
other_cols |
Preserve in the output non-target columns present in the input data. New columns will always be on the end. The "taxon_id" column will be preserved in the front. Takes one of the following inputs:
|
out_names |
The names of count columns in the output. Must be the same
length and order as |
drop |
If |
more_than |
A sample must have greater than this value for it to be counted as present. |
dataset |
DEPRECIATED. use "data" instead. |
Value
A tibble
See Also
Other calculations:
calc_diff_abund_deseq2()
,
calc_group_mean()
,
calc_group_median()
,
calc_group_rsd()
,
calc_group_stat()
,
calc_obs_props()
,
calc_prop_samples()
,
calc_taxon_abund()
,
compare_groups()
,
counts_to_presence()
,
rarefy_obs()
,
zero_low_counts()
Examples
## Not run:
# Parse data for example
x = parse_tax_data(hmp_otus, class_cols = "lineage", class_sep = ";",
class_key = c(tax_rank = "taxon_rank", tax_name = "taxon_name"),
class_regex = "^(.+)__(.+)$")
# Count samples with at least one read
calc_n_samples(x, data = "tax_data")
# Count samples with at least 5 reads
calc_n_samples(x, data = "tax_data", more_than = 5)
# Return a vector instead of a table
calc_n_samples(x, data = "tax_data", drop = TRUE)
# Only use some columns
calc_n_samples(x, data = "tax_data", cols = hmp_samples$sample_id[1:5])
# Return a count for each treatment
calc_n_samples(x, data = "tax_data", groups = hmp_samples$body_site)
# Rename output columns
calc_n_samples(x, data = "tax_data", groups = hmp_samples$body_site,
out_names = c("A", "B", "C", "D", "E"))
# Preserve other columns from input
calc_n_samples(x, data = "tax_data", other_cols = TRUE)
calc_n_samples(x, data = "tax_data", other_cols = 2)
calc_n_samples(x, data = "tax_data", other_cols = "otu_id")
## End(Not run)