metaGE.fit {metaGE} | R Documentation |
Meta-analysis procedure: Fixed or Random effect.
Description
Quantitative trait loci detection via Fixed or Random effect meta-analysis GWAS procedure.
Usage
metaGE.fit(Data, MatCorr, Method, NA.omit = TRUE, DropZScores = FALSE)
Arguments
Data |
A dataset containing the estimated marker effect and its associated pvalue of each marker (in rows) in each environment (in columns), as obtained from metaGE.collect. |
MatCorr |
The inter-environments correlation matrix. Can be computed using metaGE.cor. |
Method |
A string specifying the method to be performed: either 'Fe' or 'Re'. |
NA.omit |
A boolean specifying whether the markers with some NA values should be removed. (TRUE by default) |
DropZScores |
A boolean specifying whether the Zscores should be dropped from the dataset or not.(FALSE by default) |
Details
Different tests may be performed:
Fixed Effect (Fe), to identify markers with a stable effect across environments.
Random Effect (Re), to identify markers whose effects may be unstable across environments.
Value
The dataset Data with supplementary columns:
Mu: Estimation of Mu,
Tau: Estimation of Tau, the heterogeneity,
Pvalue: The Pvalue of the test,
the Zscores for each environment if DropLocalScores = FALSE.
Examples
require(dplyr)
# Import the data
data("metaData")
# Compute the inter-environment correlation matrix
matCorr <- metaGE.cor(metaData, Threshold = 0.8)
# Fixed Effect
FeDF <- metaGE.fit(metaData, matCorr, Method = "Fe")
head(FeDF %>% select(CHR, POS, MARKER, Mu, Tau, PVALUE))
# Random Effect
ReDF <- metaGE.fit(metaData, matCorr, Method = "Re")
head(ReDF %>% select(CHR, POS, MARKER, Mu, Tau, PVALUE))