plot_messi {messi} | R Documentation |
Forestplot to Summarize Estimation and Inference on alpha_a and beta_m.
Description
Forestplot to Summarize Estimation and Inference on alpha_a and beta_m.
Usage
plot_messi(n, alpha.a.hat, beta.m.hat, labels, asym.var.mat)
Arguments
n |
Sample size of the analysis |
alpha.a.hat |
Estimate of alpha_a, a (p_m x 1) vector. |
beta.m.hat |
Estimate of beta_m, a (p_m x 1) vector. |
labels |
A (p_m x 1) vector of mediator names. Make sure that the labels are in the same order as the mediators appear in the design matrix. |
asym.var.mat |
Joint asymptotic variance-covariance matrix of alpha_a and beta_m, a (2p_m x 2p_m) matrix. |
Value
Data frames and forestplots summarizing alpha_a and beta_m estimation.
Examples
data(Med)
Y = Med$Y
M = Med$M
A = Med$A
C = Med$C
T.hat.external = Med$T.hat.external
var.T.hat.external = Med$var.T.hat.external
test <- messi(Y = Y, M = M, A = A, C = C, method = 'Unconstrained', T.hat.external = T.hat.external,
var.T.hat.external = var.T.hat.external, s2.fixed = NULL)
n = Med$n
p = Med$p
plot_messi(n = n, alpha.a.hat = test$alpha.a.hat, beta.m.hat = test$beta.m.hat,
labels = paste0("M",1:p), asym.var.mat = test$asym.var.mat)
[Package messi version 0.1.1 Index]