precision.mle.ncb.od {merror} | R Documentation |
Computes iterative approximation to mle precision estimates for nonconstant bias model using original data.
Description
This is an internal function that computes iterative approximation to mle precision estimates for nonconstant bias model using original data.
Usage
precision.mle.ncb.od(x, M = 20, beta.bars = beta.bar(x), jaech.errors = FALSE)
Arguments
x |
A matrix or numeric data.frame consisting of an n (no. of items) by N (no. of methods) matrix of measuremnts. N must be >= 3 and n > N. |
M |
Maximum no. of iterations for convergence. |
beta.bars |
Estimates or hypothesized values for the betas. |
jaech.errors |
TRUE replicates the minor error in Jaech's Fortran code to allow comparison with his examples. |
Details
Provides iterative approximation to MLE precision estimates for NonConstant Bias model using Original Data. See Jaech, p. 185-186.
Value
sigma2 |
Estimated squared imprecisions (variances) for methods. |
sigma.mu2 |
Estimated process variance. |
Author(s)
Richard A. Bilonick
References
Jaech, J. L. (1985) Statistical Analysis of Measurement Errors. New York: Wiley.
See Also
precision.grubbs.ncb.od
,precision.grubbs.cb.pd