mederrFit-class {mederrRank} | R Documentation |
Class "mederrFit". Simulated Monte Carlo Chains (Step 1) for the Bayesian Hierarchical Model Used to Identify the Most Harmful Medication Errors.
Description
This class encapsulates the simulated Monte Carlo chains for the Bayesian Hierarchical Model as described in Myers et al. (2011) forcing a symmetric normal distribution on the \theta_i
, i=1,\ldots,n
.
Objects from the Class
Objects can be created by calls of the form new("mederrFit", thetai, deltaj, gamma, sigma2, tau2, p.acc.i, p.acc.j, tune.theta, tune.delta, k, eta)
, but most often as the result of a call to bhm.mcmc
or to bhm.constr.resamp
.
Slots
thetai
:Object of class
"matrix"
; simulated chains for the\theta_i
,i = 1,\ldots,n
, error profiles random effects; seebhm.mcmc
.deltaj
:Object of class
"matrix"
; simulated chains for the\delta_j
,i = j,\ldots,J
, hospitals random effects; seebhm.mcmc
.gamma
:Object of class
"numeric"
; simulated chain for the\gamma
parameter; seebhm.mcmc
.sigma2
:Object of class
"numeric"
; simulated chain for the\sigma^2
parameter; seebhm.mcmc
.tau2
:Object of class
"numeric"
; simulated chain for the\tau^2
parameter; seebhm.mcmc
.p.acc.i
:Object of class
"numeric"
; acceptance rates for the error profiles random effects.p.acc.j
:Object of class
"numeric"
; acceptance rates for the hospitals random effects.tune.theta
:Object of class
"numeric"
; last updated values of the\theta_i
working variances for the Metropolis step.tune.delta
:Object of class
"numeric"
; last updated values of the\delta_j
working variances for the Metropolis step.k
:Object of class
"numeric"
;k
value used in the simulation.eta
:Object of class
"numeric"
;\eta
value used in the simulation.
Methods
- plot
signature(x = "mederrFit", y = "mederrFit")
: Provides a graphical representation of the estimates.- summary
signature(object = "mederrFit")
: Summarizes the information regarding the estimates.
Author(s)
Sergio Venturini sergio.venturini@unicatt.it,
Jessica A. Myers jmyers6@partners.org
References
Myers, J. A., Venturini, S., Dominici, F. and Morlock, L. (2011), "Random Effects Models for Identifying the Most Harmful Medication Errors in a Large, Voluntary Reporting Database". Technical Report.
See Also
bayes.rank
,
bhm.constr.resamp
,
bhm.mcmc
.