bhm.mcmc {mederrRank} | R Documentation |
Markov Chain Monte Carlo Estimation (Step 1) of the Bayesian Hierarchical Model for Identifying the Most Harmful Medication Errors
Description
This function implements the Markov Chain Monte Carlo estimation methodology for the Bayesian hierarchical model described in Myers et al. (2011).
Usage
bhm.mcmc(dat, nsim = 2000, burnin = 500, scale.factor = 1,
adaptive.int = 100, adaptive.max = 1000, prior = NULL,
init = NULL, tuneD = NULL, tuneT = NULL)
Arguments
dat |
an object of class "mederrData". |
nsim |
number of iterations. |
burnin |
number of burn-in iterations. |
scale.factor |
scale factor of the random effects proposal distribution. |
adaptive.int |
iteration interval at which the standard error of the random effects proposal distribution is updated. |
adaptive.max |
last iteration at which the standard error of the random effects proposal distribution is updated. |
prior |
an optional list of the hyperparameters values; see the Details section below. |
init |
an optional list of initial values for the model parameters; see the Details section below. |
tuneD |
an optional vector of the |
tuneT |
an optional vector of the |
Details
The Bayesian hierarchical model (with crossed random effects) implemented here for identifying the medication error profiles with the largest log odds of harm is
y_{ij} | N_{ij}, p_{ij} \sim Bin(N_{ij},p_{ij})
logit(p_{ij}) = \gamma + \theta_i + \delta_j
\theta_i | \sigma, \eta, k \sim St(0,\sigma,k,\eta), \qquad i=1,\ldots,n
\delta_j | \tau^2 \sim N(0,\tau^2), \qquad j=1,\ldots,J
\gamma \sim N(g,G)
\sigma^2 \sim IG(a_1,b_1)
\tau^2 \sim IG(a_2,b_2)
k \sim Unif(0,\infty)
\eta \sim Unif(0,\infty),
where N_{ij}
denotes the number of times that the error profile i
is cited on a report from hospital j and y_{ij}
is the corresponding number of times that profile i
in hospital j
was reported with harm.
This function implements the first model estimation step in which the values k = \infty
and k = 1
, i.e. a symmetric normal distribution, is forced for the error profiles' random effects. A sample from the joint posterior distribution of all other parameters via Markov Chain Monte Carlo with adaptive Metropolis steps for each set of random effects is obtained. For more details see Myers et al. (2011).
Value
bhm.mcmc
returns an object of the class "mederrFit".
Author(s)
Sergio Venturini sergio.venturini@unicatt.it,
Jessica A. Myers jmyers6@partners.org
References
Myers, J. A., Venturini, S., Dominici, F. and Morlock, L. (2011), "Random Effects Models for Identifying the Most Harmful Medication Errors in a Large, Voluntary Reporting Database". Technical Report.
See Also
bhm.resample
,
mederrData
,
mederrFit
.
Examples
## Not run:
data("simdata", package = "mederrRank")
summary(simdata)
fit <- bhm.mcmc(simdata, nsim = 1000, burnin = 500, scale.factor = 1.1)
resamp <- bhm.resample(fit, simdata, p.resample = .1,
k = c(3, 6, 10, 30, 60, Inf), eta = c(.5, .8, 1, 1.25, 2))
fit2 <- bhm.constr.resamp(fit, resamp, k = 3, eta = .8)
plot(fit, fit2, simdata)
theta0 <- c(10, 6, 100, 100, .1)
ans <- mixnegbinom.em(simdata, theta0, 50000, 0.01, se = TRUE,
stratified = TRUE)
summary(fit2, ans, simdata)
## End(Not run)