bayes.rank {mederrRank} | R Documentation |
Optimal Bayesian Ranking
Description
This function estimates the ranks of the log odds of harm of the various medication error profiles as described in Myers et al. (2011).
Usage
bayes.rank(model)
Arguments
model |
a mederrFit object. |
Details
Using the posterior samples of the \theta_i
, the function estimates the ranks of the log odds of harm of the various error profiles. Optimal Bayesian ranking gives estimates of rank for profile i
as
\hat{R}_i = \sum_{k=1}^{n}{\hat{P}(\theta_k \leq \theta_i | \boldsymbol{y}, \boldsymbol{N})},
where \hat{P}(\theta_k \leq \theta_i | \boldsymbol{y}, \boldsymbol{N})
is the posterior probability that \theta_k \leq \theta_i
.
Value
bayes.rank
returns the numerical vector of Optimal Bayesian ranks for the chosen mederrFit model (see the references for the details).
Author(s)
Sergio Venturini sergio.venturini@unicatt.it,
Jessica A. Myers jmyers6@partners.org
References
Myers, J. A., Venturini, S., Dominici, F. and Morlock, L. (2011), "Random Effects Models for Identifying the Most Harmful Medication Errors in a Large, Voluntary Reporting Database". Technical Report.
See Also
Examples
## Not run:
data("simdata", package = "mederrRank")
summary(simdata)
fit <- bhm.mcmc(simdata, nsim = 1000, burnin = 500, scale.factor = 1.1)
ranks <- bayes.rank(fit)
summary(ranks)
## End(Not run)