EBGM {mederrRank} | R Documentation |
Geometric Mean of the Relative Risk Empirical Bayes Posterior Distribution
Description
This function computes the geometric mean of the empirical Bayes posterior distribution for the observed vs. expected count relative risk.
Usage
EBGM(eb.result)
Arguments
eb.result |
output of the |
Details
For further details see DuMouchel (1999).
Value
EBGM
returns the vector of geometric means.
Author(s)
Sergio Venturini sergio.venturini@unicatt.it,
Jessica A. Myers jmyers6@partners.org
References
DuMouchel W. (1999), "Bayesian Data Mining in Large Frequency Tables, with an Application to the FDA Spontaneous Reporting System". The American Statistician, 53, 177-190.
Myers, J. A., Venturini, S., Dominici, F. and Morlock, L. (2011), "Random Effects Models for Identifying the Most Harmful Medication Errors in a Large, Voluntary Reporting Database". Technical Report.
See Also
Examples
## Not run:
data("simdata", package = "mederrRank")
summary(simdata)
fit <- bhm.mcmc(simdata, nsim = 1000, burnin = 500, scale.factor = 1.1)
resamp <- bhm.resample(fit, simdata, p.resample = .1,
k = c(3, 6, 10, 30, 60, Inf), eta = c(.5, .8, 1, 1.25, 2))
fit2 <- bhm.constr.resamp(fit, resamp, k = 3, eta = .8)
theta0 <- c(10, 6, 100, 100, .1)
ans <- mixnegbinom.em(simdata, theta0, 50000, 0.01,
se = FALSE, stratified = TRUE)
ni <- simdata@numi
rank(EBGM(ans)[1:ni])
summary(fit2, ans, simdata)
## End(Not run)
[Package mederrRank version 0.1.0 Index]