optSmacofSym_nMDS {mdsOpt} | R Documentation |
Selecting the optimal multidimensional scaling procedure - nonmetric MDS
Description
Selecting the optimal multidimensional scaling procedure by varying all combinations of normalization methods and distance measures
Usage
optSmacofSym_nMDS(x,normalizations=NULL,distances=NULL,
mdsmodels=c("ordinal"),weights=NULL,
outputCsv="",outputCsv2="",outDec=",",
stressDigits=6,HHIDigits=2,...)
Arguments
x |
matrix or dataset |
normalizations |
optional, vector of normalization methods that should be used in procedure |
distances |
optional, vector of distance measures (manhattan, Euclidean, Chebyshew, squared Euclidean, GDM1) that should be used in procedure |
mdsmodels |
"ordinal" (nonmetric MDS) |
weights |
optional, variable weights used in distance calculation. Each weight takes value from interval [0; 1] and sum of weights equals one |
outputCsv |
optional, name of csv file with results |
outputCsv2 |
optional, name of csv (comma as decimal point sign) file with results |
outDec |
decimal sign used in returned table |
stressDigits |
Number of decimal digits for displaying Stress 1 value |
HHIDigits |
Number of decimal digits for displaying HHI spp value |
... |
arguments passed to smacofSym |
Details
Parameter normalizations
may be the subset of the following values:
"n1","n2","n3","n3a","n4","n5","n5a","n6","n6a",
"n7","n8","n9","n9a","n10","n11","n12","n12a","n13"
(e.g. normalizations=c("n1","n2","n3","n5","n5a",
"n8","n9","n9a","n11","n12a"))
if normalizations
is set to "n0" no normalization is applied
Parameter distances
may be the subset of the following values:
"euclidean", "manhattan","maximum","seuclidean","GDM1"
(e.g. distances=c("euclidean","manhattan"))
Parameter mdsmodels
"ordinal" MDS model (nonmetric MDS)
Value
Data frame ordered by increasing value of Stress-1 fit measure with columns:
Normalization method |
normalization method used for p-th multidimensional scaling procedure |
MDS model |
"ordinal" MDS model (nonmetric MDS) for p-th multidimensional scaling procedure |
Distance measure |
distance measure used for p-th multidimensional scaling procedure |
STRESS 1 |
value of Kruskal Stress-1 fit measure for p-th multidimensional scaling procedure |
HHI spp |
Hirschman-Herfindahl HHI index calculated based on stress per point for p-th multidimensional scaling procedure |
Author(s)
Marek Walesiak marek.walesiak@ue.wroc.pl, Andrzej Dudek andrzej.dudek@ue.wroc.pl
Department of Econometrics and Computer Science, Wroclaw University of Economics and Business, Poland
References
Borg, I., Groenen, P.J.F. (2005), Modern Multidimensional Scaling. Theory and Applications, 2nd Edition, Springer Science+Business Media, New York. ISBN: 978-0387-25150-9. Available at: https://link.springer.com/book/10.1007/0-387-28981-X.
Borg, I., Groenen, P.J.F., Mair, P. (2013), Applied Multidimensional Scaling, Springer, Heidelberg, New York, Dordrecht, London. Available at: doi:10.1007/978-3-642-31848-1.
De Leeuw, J., Mair, P. (2015), Shepard Diagram, Wiley StatsRef: Statistics Reference Online, John Wiley & Sons Ltd.
Dudek, A., Walesiak, M. (2020), The Choice of Variable Normalization Method in Cluster Analysis, pp. 325-340, [In:] K. S. Soliman (Ed.), Education Excellence and Innovation Management: A 2025 Vision to Sustain Economic Development during Global Challenges, Proceedings of the 35th International Business Information Management Association Conference (IBIMA), 1-2 April 2020, Seville, Spain. ISBN: 978-0-9998551-4-1.
Herfindahl, O.C. (1950), Concentration in the Steel Industry, Doctoral thesis, Columbia University.
Hirschman, A.O. (1964), The Paternity of an Index, The American Economic Review, Vol. 54, 761-762.
Walesiak, M. (2014), Przegląd formuł normalizacji wartości zmiennych oraz ich własności w statystycznej analizie wielowymiarowej [Data Normalization in Multivariate Data Analysis. An Overview and Properties], Przegląd Statystyczny, tom 61, z. 4, 363-372. Available at: doi:10.5604/01.3001.0016.1740.
Walesiak, M. (2016a), Wybór grup metod normalizacji wartości zmiennych w skalowaniu wielowymiarowym [The Choice of Groups of Variable Normalization Methods in Multidimensional Scaling], Przegląd Statystyczny, tom 63, z. 1, 7-18. Available at: doi:10.5604/01.3001.0014.1145.
Walesiak, M. (2016b), Visualization of Linear Ordering Results for Metric Data with the Application of Multidimensional Scaling, Ekonometria, 2(52), 9-21. Available at: doi:10.15611/ekt.2016.2.01.
Walesiak, M., Dudek, A. (2017), Selecting the Optimal Multidimensional Scaling Procedure for Metric Data with R Environment, STATISTICS IN TRANSITION new series, September, Vol. 18, No. 3, pp. 521-540.
Walesiak, M., Dudek, A. (2020), Searching for an Optimal MDS Procedure for Metric and Interval-Valued Data using mdsOpt R package, pp. 307-324, [In:] K. S. Soliman (Ed.), Education Excellence and Innovation Management: A 2025 Vision to Sustain Economic Development during Global Challenges, Proceedings of the 35th International Business Information Management Association Conference (IBIMA), 1-2 April 2020, Seville, Spain. ISBN: 978-0-9998551-4-1.
See Also
data.Normalization
, dist.GDM
, dist
, smacofSym
Examples
library(mdsOpt)
metnor<-c("n1","n2","n3","n5","n5a","n8","n9","n9a","n11","n12a")
metscale<-"ordinal"
metdist<-c("euclidean","manhattan","maximum","seuclidean","GDM1")
data(data_lower_silesian)
res<-optSmacofSym_nMDS(data_lower_silesian,normalizations=metnor,
distances=metdist,mdsmodels=metscale)
stress<-as.numeric(gsub(",",".",res[,"STRESS 1"],fixed=TRUE))
hhi<-as.numeric(gsub(",",".",res[,"HHI spp"],fixed=TRUE))
cs<-(min(stress)+max(stress))/2 # critical stress
t<-findOptimalSmacofSym(res,critical_stress=cs)
print(t)
plot(stress[-t$Nr],hhi[-t$Nr], xlab="Stress-1", ylab="HHI",type="n",font.lab=3)
text(stress[-t$Nr],hhi[-t$Nr],labels=(1:nrow(res))[-t$Nr])
abline(v=cs,col="red")
points(stress[t$Nr],hhi[t$Nr], cex=5,col="red")
text(stress[t$Nr],hhi[t$Nr],labels=(1:nrow(res))[t$Nr],col="red")