MCResultBCa.initialize {mcrPioda} | R Documentation |
Initialize Method for 'MCResultBCa' Objects.
Description
Method initializes newly created objects of class 'MCResultBCa'.
Usage
MCResultBCa.initialize(
.Object,
data = data.frame(X = NA, Y = NA),
para = matrix(NA, ncol = 4, nrow = 2),
xmean = 0,
mnames = c("unknown", "unknown"),
regmeth = "unknown",
cimeth = "unknown",
bootcimeth = "unknown",
alpha = 0.05,
glob.coef = c(0, 0),
glob.sigma = c(0, 0),
nsamples = 0,
nnested = 0,
B0jack = 0,
B1jack = 0,
B0 = 0,
B1 = 0,
MX = 0,
rng.seed = as.numeric(NA),
rng.kind = "unknown",
sigmaB0 = 0,
sigmaB1 = 0,
error.ratio = 0,
weight = 1,
robust.cov = "MCD"
)
Arguments
.Object |
object to be initialized |
data |
empty data.frame |
para |
empty coefficient matrix |
xmean |
0 for init-purpose |
mnames |
empty method names vector |
regmeth |
string specifying the regression-method |
cimeth |
string specifying the confidence interval method |
bootcimeth |
string specifying the method for bootstrap confidence intervals |
alpha |
value specifying the 100(1-alpha)% confidence-level |
glob.coef |
global coefficients |
glob.sigma |
global sd values for regression parameters |
nsamples |
number of samples for resampling |
nnested |
number of inner simulation for nested bootstrap |
B0jack |
jackknife intercept |
B1jack |
jackknife slope |
B0 |
intercept |
B1 |
slope |
MX |
parameter |
rng.seed |
random number generator seed |
rng.kind |
type of the random number generator |
sigmaB0 |
SD for intercepts |
sigmaB1 |
SD for slopes |
error.ratio |
for Deming regression |
weight |
1 for each data point |
robust.cov |
"MCD", "SDe" or "Classic" covariance method see rrcov |
Value
No return value