pr_MLiG {mcmcsae} | R Documentation |
Create an object representing a Multivariate Log inverse Gamma (MLiG) prior distribution
Description
Create an object representing a Multivariate Log inverse Gamma (MLiG) prior distribution
Usage
pr_MLiG(mean = 0, precision = 0, labels = NULL, a = 1000)
Arguments
mean |
scalar or vector parameter for the mean in the large
|
precision |
scalar or vector parameter for the precision in the
large |
labels |
optional character vector with coefficient labels. If specified,
it should have the same length as at least one of |
a |
scalar parameter that controls how close the prior is to independent
normal priors with |
Value
An environment representing the specified prior, for internal use.
References
J.R. Bradley, S.H. Holan and C.K. Wikle (2018). Computationally efficient multivariate spatio-temporal models for high-dimensional count-valued data (with discussion). Bayesian Analysis 13(1), 253-310.