generate_data {mcmcsae} | R Documentation |
Generate a data vector according to a model
Description
This function generates draws from the prior predictive distribution. Parameter values are drawn from their priors, and consequently data is generated from the sampling distribution given these parameter values.
Usage
generate_data(
formula,
data = NULL,
family = "gaussian",
ny = NULL,
ry = NULL,
r.mod,
sigma.fixed = NULL,
sigma.mod = NULL,
Q0 = NULL,
formula.V = NULL,
linpred = NULL
)
Arguments
formula |
A model formula, see |
data |
see |
family |
sampling distribution family, see |
ny |
see |
ry |
see |
r.mod |
see |
sigma.fixed |
see |
sigma.mod |
see |
Q0 |
see |
formula.V |
see |
linpred |
see |
Value
A list with a generated data vector and a list of prior means of the parameters. The parameters are drawn from their priors.
Examples
n <- 250
dat <- data.frame(
x = rnorm(n),
g = factor(sample(1:10, n, replace=TRUE)),
ny = 10
)
gd <- generate_data(
~ reg(~ 1 + x, Q0=10, b0=c(0, 1), name="beta") + gen(factor = ~ g, name="v"),
family="binomial", ny="ny", data=dat
)
gd
plot(dat$x, gd$y)
[Package mcmcsae version 0.7.7 Index]