| SBC_test {mcmcsae} | R Documentation | 
Simulation based calibration
Description
Simulation based calibration
Usage
SBC_test(
  ...,
  pars,
  n.draws = 25L,
  n.sim = 20L * n.draws,
  burnin = 25L,
  thin = 2L,
  show.progress = TRUE,
  verbose = TRUE,
  n.cores = 1L,
  cl = NULL,
  seed = NULL,
  export = NULL
)
Arguments
| ... | passed to  | 
| pars | named list with univariate functions of the parameters to use in test. This list
is passed to argument  | 
| n.draws | number of posterior draws to retain in posterior simulations. | 
| n.sim | number of simulation iterations. | 
| burnin | burnin to use in posterior simulations, passed to  | 
| thin | thinning to use in posterior simulations, passed to  | 
| show.progress | whether a progress bar should be shown. | 
| verbose | set to  | 
| n.cores | the number of cpu cores to use. Default is one, i.e. no parallel computation.
If an existing cluster  | 
| cl | an existing cluster can be passed for parallel computation. If  | 
| seed | a random seed (integer). For parallel computation it is used to independently seed RNG streams for all workers. | 
| export | a character vector with names of objects to export to the workers. This may be needed for parallel execution if expressions in the model formulae depend on global variables. | 
Value
A matrix with ranks.
References
M. Modrak, A.H. Moon, S. Kim, P. Buerkner, N. Huurre, K. Faltejskova, A. Gelman and A. Vehtari (2023). Simulation-based calibration checking for Bayesian computation: The choice of test quantities shapes sensitivity. Bayesian Analysis, 1(1), 1-28.
Examples
## Not run: 
# this example may take a long time
n <- 10L
dat <- data.frame(x=runif(n))
ranks <- SBC_test(~ reg(~ 1 + x, prior=pr_normal(mean=c(0.25, 1), precision=1), name="beta"),
  sigma.mod=pr_invchisq(df=1, scale=list(df=1, scale=1)), data=dat,
  pars=list(mu="beta[1]", beta_x="beta[2]", sigma="sigma_"),
  n.draws=9L, n.sim=10L*20L, thin=2L, burnin=20L
)
ranks
## End(Not run)