mcmodel {mc2d} | R Documentation |
Monte Carlo model
Description
Specify a ‘mcmodel’, without evaluating it, for a further
evaluation using evalmcmod
.
Usage
mcmodel(x, is.expr=FALSE)
Arguments
x |
An R call or an expression. |
is.expr |
‘FALSE’ to send a call, ‘TRUE’ to send an expression (see Examples) |
Details
The model should be put between ‘{’ and the last line should be of the form ‘mc(...)’. Any reference to the number of simulation in the dimension of variability should be done via ‘ndvar()’ or (preferred) ‘nsv’. Any reference to the number of simulations in the dimension of uncertainty should be done via ‘ndunc()’ or (preferred) ‘nsu’.
Value
an R expression, with class ‘mcmodel’
See Also
evalmcmod
to evaluate the model.
mcmodelcut
to evaluate high Dimension Monte Carlo
Model in a loop.
Examples
modEC1 <- mcmodel({
conc <- mcdata(10, "0")
cook <- mcstoc(rempiricalD, values=c(0, 1/5, 1/50), prob=c(0.027, 0.373, 0.600))
serving <- mcstoc(rgamma, shape=3.93, rate=0.0806)
expo <- conc * cook * serving
dose <- mcstoc(rpois, lambda=expo)
risk <- 1-(1-0.001)^dose
mc(conc, cook, serving, expo, dose, risk)
})
evalmcmod(modEC1, nsv=100, nsu=100)
[Package mc2d version 0.2.1 Index]