BetaSubjective {mc2d} | R Documentation |
The BetaSubjective Distribution
Description
Density, distribution function, quantile function and random generation for the "Beta Subjective" distribution
Usage
dbetasubj(x,
min,
mode,
mean,
max,
log = FALSE)
pbetasubj(q,
min,
mode,
mean,
max,
lower.tail = TRUE,
log.p = FALSE
)
qbetasubj(p,
min,
mode,
mean,
max,
lower.tail = TRUE,
log.p = FALSE
)
rbetasubj(n,
min,
mode,
mean,
max
)
pbetasubj(q, min, mode, mean, max, lower.tail = TRUE, log.p = FALSE)
qbetasubj(p, min, mode, mean, max, lower.tail = TRUE, log.p = FALSE)
rbetasubj(n, min, mode, mean, max)
Arguments
x , q |
Vector of quantiles. |
min |
continuous boundary parameter min < max |
mode |
continuous parameter |
mean |
continuous parameter min < mean < max |
max |
continuous boundary parameter |
log , log.p |
Logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
Logical; if TRUE (default), probabilities are |
p |
Vector of probabilities. |
n |
Number of observations. |
Details
The Subjective beta distribution specifies a [stats::dbeta()] distribution defined by the minimum, most likely (mode), mean
and maximum values and can be used for fitting data for a variable that is bounded to the interval [min, max]
.
The shape parameters are calculated from the mode value and mean parameters. It can also be used to represent
uncertainty in subjective expert estimates.
Define
mid=(min+max)/2
a_{1}=2*\frac{(mean-min)*(mid-mode)}{((mean-mode)*(max-min))}
a_{2}=a_{1}*\frac{(max-mean)}{(mean-min)}
The subject beta distribution is a [stats::dbeta()] distribution defined on the [min, max]
domain
with parameter shape1 = a_{1}
and shape2 = a_{2}
.
# Hence, it has density #
f(x)=(x-min)^{(a_{1}-1)}*(max-x)^{(a_{2}-1)} / (B(a_{1},a_{2})*(max-min)^{(a_{1}+a_{2}-1)})
# The cumulative distribution function is #
F(x)=B_{z}(a_{1},a_{2})/B(a_{1},a_{2})=I_{z}(a_{1},a_{2})
# where z=(x-min)/(max-min)
. Here B is the beta function and B_z
is the incomplete beta function.
The parameter restrictions are:
min <= mode <= max
min <= mean <= max
If mode > mean
then mode > mid
, else mode < mid
.
Author(s)
Yu Chen
Examples
curve(dbetasubj(x, min=0, mode=1, mean=2, max=5), from=-1,to=6)
pbetasubj(q = seq(0,5,0.01), 0, 1, 2, 5)
qbetasubj(p = seq(0,1,0.01), 0, 1, 2, 5)
rbetasubj(n = 1e7, 0, 1, 2, 5)