rmatrixCHkind1 {matrixsampling} | R Documentation |
Sampler of the matrix variate confluent hypergometric kind one distribution
Description
Samples the matrix variate confluent hypergometric kind one distribution.
Usage
rmatrixCHkind1(n, nu, alpha, beta, theta = 1, Sigma = NULL, p,
checkSymmetry = TRUE)
Arguments
n |
sample size, a positive integer |
nu |
shape parameter, a positive number; if |
alpha , beta |
shape parameters with the following constraints:
|
theta |
scale parameter, a positive number |
Sigma |
scale matrix, a symmetric positive definite matrix, or
|
p |
if |
checkSymmetry |
logical, whether to check that |
Value
A numeric three-dimensional array; simulations are stacked along the third dimension.
Note
For alpha = beta
, this is the matrix variate Gamma distribution
with parameters nu
, theta
, Sigma
.
References
Gupta & al. Properties of Matrix Variate Confluent Hypergeometric Function Distribution. Journal of Probability and Statistics vol. 2016, Article ID 2374907, 12 pages, 2016.
Examples
nu <- 5; alpha <- 10; beta <- 12; theta <- 2; p <- 3; Sigma <- toeplitz(3:1)
CHsims <- rmatrixCHkind1(10000, nu, alpha, beta, theta, Sigma)
# simulations of the trace
sims <- apply(CHsims, 3, function(X) sum(diag(X)))
mean(sims)
theta * nu * (nu-beta+(p+1)/2) / (nu-alpha+(p+1)/2) * sum(diag(Sigma))