cut_by_significance {massiveGST} | R Documentation |
Trim the table of results.
Description
This function trims the table of results from massiveGST function according to the significance required.
Usage
cut_by_significance(ttable,
level_of_significance = 0.05,
where = c("BH.value", "bonferroni", "p.value")
)
Arguments
ttable |
a data frame of "mGST" class coming from massiveGST function. |
level_of_significance |
a real value between 0.0 and 1. |
where |
a character string specifying where the level_of_significance has to be applied to the output; must be one of "p.value", "BH.value" (default), and "bonferroni" |
Details
BH.value is the adjustment of p-values according to Benijamini and Hockberg's method; B.value is the adjustment of p-values according to Bonferroni's method.
Value
A data frame.
Note
the functions cut_by_NES, cut_by_logit2NES, and cut_by_significance can be nested.
Author(s)
Stefano M. Pagnotta
References
Cerulo, Pagnotta (2022) doi:10.3390/e24050739
See Also
massiveGST, cut_by_logit2NES, cut_by_NES, summary.mGST, plot.mGST
Examples
library(massiveGST)
# get the gene profile
fname <- system.file("extdata", package="massiveGST")
fname <- file.path(fname, "pre_ranked_list.txt")
geneProfile <- get_geneProfile(fname)
# get the gene-sets
geneSets <- get_geneSets_from_msigdbr(category = "H", what = "gene_symbol")
# run the function
ans <- massiveGST(geneProfile, geneSets, alternative = "two.sided")
head(ans)
cut_by_significance(ans)
cut_by_significance(ans, level_of_significance = 0.05, where = "p")
cut_by_logit2NES(cut_by_significance(ans))
summary(cut_by_significance(ans, level_of_significance = 0.05, where = "bonferroni"))
plot(cut_by_significance(ans, level_of_significance = 0.05, where = "bonferroni"))
[Package massiveGST version 1.2.3 Index]