rangeSVM_predict {maskRangeR} | R Documentation |
Generate a raster based on predictions of SVM model with values corresponding to the species.
Description
rangeSVM_predict()
returns a raster representing the ranges of the species
predicted by the fitted SVM tuned with rangeSVM()
.
Usage
rangeSVM_predict(svm, r, sdm = NULL)
Arguments
svm |
Model object for the SVM, returned by |
r |
Raster with the extent desired for the prediction. The values for cells used for predictions must have non-NA values, but the particular values do not matter. |
sdm |
Raster or RasterStack representing environmental suitability (can be predictions from SDMs). These rasters must match the predictor variables used in the SVM. Default is NULL. |
Details
The values of the output raster are 1, 2, ..., corresponding to xy1, xy2, and any additional species used in rangeSVM()
.
These values represent the identities of the species.
Value
The Raster representing the SVM predictions.
Examples
r1.sdm <- raster::raster(raster::extent(c(-72, -64, 41, 50)), res = c(0.008333333, 0.008333333))
raster::values(r1.sdm) <- (1:raster::ncell(r1.sdm))^2
r2.sdm <- raster::raster(raster::extent(c(-72, -64, 41, 50)), res = c(0.008333333, 0.008333333))
raster::values(r2.sdm) <- (raster::ncell(r2.sdm):1)^2
r3.sdm <- raster::raster(raster::extent(c(-72, -64, 41, 50)), res = c(0.008333333, 0.008333333))
r3.sdm [1] <- 10
r3.sdm <- raster::distance(r3.sdm)
sp1.xy <- data.frame(dismo::randomPoints(r1.sdm, 15, prob = TRUE))
colnames(sp1.xy) <- c("longitude", "latitude")
sp2.xy <- data.frame(dismo::randomPoints(r2.sdm, 15, prob = TRUE))
colnames(sp2.xy) <- c("longitude", "latitude")
sp3.xy <- data.frame(dismo::randomPoints(r3.sdm, 15, prob = TRUE))
colnames(sp3.xy) <- c("longitude", "latitude")
# Spatial SVMs (this can take about a minute to run)
svm.SP <- rangeSVM(sp1.xy, sp2.xy, sp3.xy, nrep=5)
# Use SVM to create a raster of predicted regions
rand_svm.SP <- rangeSVM_predict(svm = svm.SP, r = r1.sdm)
[Package maskRangeR version 1.1 Index]