mallet.topic.words {mallet} | R Documentation |
Retrieve a matrix of words weights for topics
Description
This function returns a matrix with one row for every topic and one column for every word in the vocabulary.
Usage
mallet.topic.words(topic.model, normalized = FALSE, smoothed = FALSE)
Arguments
topic.model |
A |
normalized |
If |
smoothed |
If |
Value
a number of topics by vocabulary size matrix.
Examples
## Not run:
# Read in sotu example data
data(sotu)
sotu.instances <-
mallet.import(id.array = row.names(sotu),
text.array = sotu[["text"]],
stoplist = mallet_stoplist_file_path("en"),
token.regexp = "\\p{L}[\\p{L}\\p{P}]+\\p{L}")
# Create topic model
topic.model <- MalletLDA(num.topics=10, alpha.sum = 1, beta = 0.1)
topic.model$loadDocuments(sotu.instances)
# Train topic model
topic.model$train(200)
# Extract results
doc_topics <- mallet.doc.topics(topic.model, smoothed=TRUE, normalized=TRUE)
topic_words <- mallet.topic.words(topic.model, smoothed=TRUE, normalized=TRUE)
top_words <- mallet.top.words(topic.model, word.weights = topic_words[2,], num.top.words = 5)
## End(Not run)
[Package mallet version 1.3.0 Index]