plot.mHMM {mHMMbayes} | R Documentation |
Plotting the posterior densities for a fitted multilevel HMM
Description
plot.mHMM
plots the posterior densities for a fitted multilevel hidden
Markov model for the group and subject level parameters simultaneously. The
plotted posterior densities are either for the transition probability matrix
gamma, or for the emission distribution probabilities (categorical data) or
means and standard deviation (continuous data).
Usage
## S3 method for class 'mHMM'
plot(
x,
component = "gamma",
dep = 1,
col,
dep_lab,
cat_lab,
lwd1 = 2,
lwd2 = 1,
lty1 = 1,
lty2 = 3,
legend_cex,
burn_in,
...
)
Arguments
x |
Object of class |
component |
String specifying if the displayed posterior densities
should be for the transition probability matrix gamma ( |
dep |
Integer specifying for which dependent variable the posterior
densities should be plotted. Only required if one wishes to plot the
emission distribution probabilities and the model is based on multiple
dependent variables. Defaults to |
col |
Vector of colors for the posterior density lines. If one is
plotting the posterior densities for gamma, or the posterior densities of
Normally distributed emission probabilities, the vector has length |
dep_lab |
Optional string when plotting the posterior
densities of the emission probabilities with length 1, denoting the label
for the dependent variable plotted. Automatically obtained from the input
object |
cat_lab |
Optional vector of strings when plotting the posterior densities of categorical emission probabilities, denoting the labels of the categorical outcome values. Automatically generated when not provided. |
lwd1 |
Positive number indicating the line width of the posterior density at the group level. |
lwd2 |
Positive number indicating the line width of the posterior density at the subject level. |
lty1 |
Positive number indicating the line type of the posterior density at the group level. |
lty2 |
Positive number indicating the line type of the posterior density at the subject level. |
legend_cex |
A numerical value giving the amount by which plotting text and symbols in the legend should be magnified relative to the default. |
burn_in |
An integer which specifies the number of iterations to discard
when obtaining the model parameter summary statistics. When left
unspecified, the burn in period specified at creating the |
... |
Arguments to be passed to methods (see |
Details
Note that the standard deviation of the (variable and) state specific Normal emission distribution in case of continuous data is fixed over subjects. Hence, for the standard deviation, only the posterior distribution at the group level is plotted.
Value
plot.mHMM
returns a plot of the posterior densities. Depending
on whether (component = "gamma"
) or (component = "emiss"
),
the plotted posterior densities are either for the transition probability
matrix gamma or for the emission distribution probabilities, respectively.
See Also
mHMM
for fitting the multilevel hidden Markov
model, creating the object mHMM
.
Examples
###### Example on package example data, see ?nonverbal
# First run the function mHMM on example data
# specifying general model properties:
m <- 2
n_dep <- 4
q_emiss <- c(3, 2, 3, 2)
# specifying starting values
start_TM <- diag(.8, m)
start_TM[lower.tri(start_TM) | upper.tri(start_TM)] <- .2
start_EM <- list(matrix(c(0.05, 0.90, 0.05, 0.90, 0.05, 0.05), byrow = TRUE,
nrow = m, ncol = q_emiss[1]), # vocalizing patient
matrix(c(0.1, 0.9, 0.1, 0.9), byrow = TRUE, nrow = m,
ncol = q_emiss[2]), # looking patient
matrix(c(0.90, 0.05, 0.05, 0.05, 0.90, 0.05), byrow = TRUE,
nrow = m, ncol = q_emiss[3]), # vocalizing therapist
matrix(c(0.1, 0.9, 0.1, 0.9), byrow = TRUE, nrow = m,
ncol = q_emiss[4])) # looking therapist
# Run a model without covariate(s):
out_2st <- mHMM(s_data = nonverbal, gen = list(m = m, n_dep = n_dep,
q_emiss = q_emiss), start_val = c(list(start_TM), start_EM),
mcmc = list(J = 11, burn_in = 5))
## plot the posterior densities for gamma
plot(out_2st, component = "gamma")