int_to_prob |
Transforming a set of Multinomial logit regression intercepts to probabilities |
mHMM |
Multilevel hidden Markov model using Bayesian estimation |
nonverbal |
Nonverbal communication of patients and therapist |
nonverbal_cov |
Predictors of nonverbal communication |
obtain_emiss |
Obtain the emission distribution probabilities for a fitted multilevel HMM |
obtain_gamma |
Obtain the transition probabilities gamma for a fitted multilevel HMM |
pd_RW_emiss_cat |
Proposal distribution settings RW Metropolis sampler for mHMM categorical emission distribution(s) |
pd_RW_emiss_count |
Proposal distribution settings RW Metropolis sampler for mHMM Poisson-lognormal emission distribution(s) |
pd_RW_gamma |
Proposal distribution settings RW Metropolis sampler for mHMM transition probability matrix gamma |
plot.mHMM |
Plotting the posterior densities for a fitted multilevel HMM |
plot.mHMM_gamma |
Plotting the transition probabilities gamma for a fitted multilevel HMM |
prior_emiss_cat |
Specifying informative hyper-prior on the categorical emission distribution(s) of the multilevel hidden Markov model |
prior_emiss_cont |
Specifying informative hyper-prior on the continuous emission distribution(s) of the multilevel hidden Markov model |
prior_emiss_count |
Specifying informative hyper-priors on the count emission distribution(s) of the multilevel hidden Markov model |
prior_gamma |
Specifying informative hyper-prior on the transition probability matrix gamma of the multilevel hidden Markov model |
prob_to_int |
Transforming a set of probabilities to Multinomial logit regression intercepts |
sim_mHMM |
Simulate data using a multilevel hidden Markov model |
var_to_logvar |
Transform the between-subject variance in the positive scale to the logvariance in the logarithmic scale |
vit_mHMM |
Obtain hidden state sequence for each subject using the Viterbi algorithm |