lqr {lqmix} | R Documentation |
Linear Quantile Regression
Description
Estimate a linear quantile regression model with no random coefficients
Usage
lqr(formula, data, qtl = 0.5, se = TRUE, R = 50, verbose = TRUE, ...)
Arguments
formula |
an object of class |
data |
a data frame containing the variables named in |
qtl |
quantile to be estimated |
se |
standard error computation |
R |
number of bootstrap samples for computing standard errors |
verbose |
if set to FALSE, no printed output is given during the function execution |
... |
further arguments to be passed to or from methods |
Details
The function computes ML estimates for the parameters of a linear quantile regression model for independent observations. Estimates are derived by maximizing the (log-)likelihood of a Laplace regression, where the location parameter is modeled as a function of fixed coefficients only.
If se=TRUE
, standard errors based on a bootstrap procedure are computed.
Value
Return an object of class
lqr
. This is a list containing the following elements:
betaf |
a vector containing fixed regression coefficients |
scale |
the scale parameter |
sigma.e |
the standard deviation of error terms |
lk |
the log-likelihood |
npar |
the total number of model parameters |
AIC |
the AIC value |
BIC |
the BIC value |
qtl |
the estimated quantile |
nobs |
the total number of observations |
se.betaf |
the standard errors for fixed regression coefficients |
se.scale |
the standard error for the scale parameter |
model |
the estimated model |
call |
the matched call |
References
Geraci M, Bottai M (2007). “Quantile regression for longitudinal data using the asymmetric Laplace distribution.” Biostatistics, 8, 140-54.
Examples
out0 = lqr(formula=meas~trt+time+trt:time,data=pain,se=TRUE,R=10)