estimate_params {loewesadditivity} | R Documentation |
Estimate the parameters for a given data set and model
Description
Estimate the parameters for a given data set and model
Usage
estimate_params(
data,
init_params = c(beta_A = 0.25, beta_B = 0.25, gamma_A = 0.5, gamma_B = 0.5, tau_1 = 0,
tau_2 = 0),
n_boot = 100,
GIA_fn = base_GIA,
S_fn = calc_S_base,
fn_list = NULL,
alpha = 0.05,
verbose = FALSE
)
Arguments
data |
data frame with the following columns
|
init_params |
named vector of parameters, that correspond to those used in 'GIA_fn'. These will be used as the initial guesses. A default is provided. |
n_boot |
number of boot straps to use to estimate confidence intervals of the parameters, GIA estimates, and values of S. The default is 100. If n_boot = 0, then no bootstraps will be run and only the point estimates will be returned. |
GIA_fn |
function to calculate the GIA from dose_A and dose_B combinations and given set of parameters. Default is base_GIA |
S_fn |
Function to calculate S. Default is calc_S_base |
fn_list |
additional arguments to pass to GIA_fn |
alpha |
alpha level used to produce CIs. The bootstrap will use a two-tailed method. The default is .05 to produce a 95% CI |
verbose |
logical indicating whether we should print where we are in the process. Default is FALSE. |
Value
a list with the following elements
params_esta data frame of dimension # of params x 4 where each row in the data frame is a parameter and where the columns are the mean, lower, alpha/2 quantile, and upper,100 - alpha/2 quantile
S_est a data frame of one row x 4 where we provide the mean, lower, and upper estimates
GIA_estthe original data with additional columns of the mean, lower, and upper estimates for each dose combination
SSESum of Square Error for the model under the best (mean) parameters
Examples
df <- loewesadditivity::cyrpa_ripr
df$dose_A <- df$CyRPA
df$dose_B <- df$RIPR
data <- fortify_gia_data(df)
model_params <- c("beta_A" = .5, "beta_B" = .5,
"gamma_A" = .5, "gamma_B" = .5,
"tau_1" = 0, "tau_2" = 0)
n_boot <- 10
GIA_fn <- base_GIA
S_fn <- calc_S_base
fn_list <- NULL
alpha <- .05
verbose <- FALSE
out <- estimate_params(data = data,
init_params = model_params,
n_boot = n_boot,
GIA_fn = GIA_fn,
S_fn = S_fn,
fn_list = fn_list,
alpha = alpha,
verbose = verbose)
names(out)