base_GIA {loewesadditivity} | R Documentation |
Estimate GIA according to the base model
Description
Estimate GIA according to the base model
Usage
base_GIA(model_params, dose_A, dose_B, fn_list = NULL)
Arguments
model_params |
named vector of parameters to be used in function. Specifically, the named parameters must be "beta_A", "beta_B", "gamma_A", "gamma_B", "tau_1", and "tau_2". See details for more info. |
dose_A |
numeric vector of doses (e.g. mg/mL) of dose_A |
dose_B |
numeric vector of doses (e.g. mg/mL) of dose_B |
fn_list |
NULL |
Value
estimated GIA for each combination of dose A and dose B
Details
The equation is given in full as follows. The GIA (%) is given a as a function of the model parameters and the doses A_i
and B_i
, respectively. The doses scaled by the respective ED50s \beta_A
and \beta_B
are denoted by A_i^*
and B_i^*
, respectively. The parameters \gamma_A
and \gamma_B
are shape parameters. The parameters \tau_1
and \tau_2
are interaction parameters. Finally, \lambda_i
is a weighted combination of dose A and dose B.
GIA_i = 100\%(1 - e^{-\psi_i})
\psi_i = \log(2)u_i^{v_i}
u_i = A^*_i + B_i^* + \tau_1 A^*_i B^*_i
v_i = \lambda_i \gamma_A + (1-\lambda_i) \gamma_B + \tau_1 \tau_2\lambda_i (1 - \lambda_i) \gamma_A \gamma_B
\lambda_i = \frac{A_i^*}{A_i^* + B_i^*}
A_i^* = A_i / \beta_A
B_i^* = B_i / \beta_B
Examples
model_params <- c("beta_A" = 1, "beta_B" = 2, "gamma_A" = .5,
"gamma_B" = .6, "tau_1" = 1, "tau_2" = 0)
dose_A <- c(0, 1, 0)
dose_B <- c(0, 0, 1)
base_GIA(model_params, dose_A, dose_B)