locpolSmoothers {locpol} | R Documentation |
Local Polynomial estimation.
Description
Computes the local polynomial estimation of the regression function.
Usage
locCteSmootherC(x, y, xeval, bw, kernel, weig = rep(1, length(y)))
locLinSmootherC(x, y, xeval, bw, kernel, weig = rep(1, length(y)))
locCuadSmootherC(x, y, xeval, bw, kernel, weig = rep(1, length(y)))
locPolSmootherC(x, y, xeval, bw, deg, kernel, DET = FALSE,
weig = rep(1, length(y)))
looLocPolSmootherC(x, y, bw, deg, kernel, weig = rep(1, length(y)),
DET = FALSE)
Arguments
x |
x covariate data values. |
y |
y response data values. |
xeval |
Vector of evaluation points. |
bw |
Smoothing parameter, bandwidth. |
kernel |
Kernel used to perform the estimation, see |
weig |
Vector of weights for observations. |
deg |
Local polynomial estimation degree ( |
DET |
Boolean to ask for the computation of the determinant if the matrix |
Details
All these function perform the estimation of the regression function
for different degrees. While locCteSmootherC
, locLinSmootherC
,
and locCuadSmootherC
uses direct computations for the degrees 0,1
and 2 respectively, locPolSmootherC
implements a general method for any degree.
Particularly useful can be looLocPolSmootherC
(Leave one out) which computes the local polynomial estimator for any degree as locPolSmootherC
does, but estimating m(x_i)
without using i
–th observation on the computation.
Value
A data frame whose components gives the evaluation points, the estimator
for the regression function m(x)
and its derivatives at each point, and
the estimation of the marginal density for x
to the p+1
power.
These components are given by:
x |
Evaluation points. |
beta0 , beta1 , beta2 , ... |
Estimation of the |
den |
Estimation of |
Author(s)
Jorge Luis Ojeda Cabrera.
References
Fan, J. and Gijbels, I. Local polynomial modelling and its applications\/. Chapman & Hall, London (1996).
Wand, M.~P. and Jones, M.~C. Kernel smoothing\/. Chapman and Hall Ltd., London (1995).
See Also
locpoly
from package KernSmooth,
ksmooth
and loess
in stats (but from earlier package modreg
).
Examples
N <- 100
xeval <- 0:10/10
d <- data.frame(x = runif(N))
bw <- 0.125
fx <- xeval^2 - xeval + 1
## Non random
d$y <- d$x^2 - d$x + 1
cuest <- locCuadSmootherC(d$x, d$y ,xeval, bw, EpaK)
lpest2 <- locPolSmootherC(d$x, d$y , xeval, bw, 2, EpaK)
print(cbind(x = xeval, fx, cuad0 = cuest$beta0,
lp0 = lpest2$beta0, cuad1 = cuest$beta1, lp1 = lpest2$beta1))
## Random
d$y <- d$x^2 - d$x + 1 + rnorm(d$x, sd = 0.1)
cuest <- locCuadSmootherC(d$x,d$y , xeval, bw, EpaK)
lpest2 <- locPolSmootherC(d$x,d$y , xeval, bw, 2, EpaK)
lpest3 <- locPolSmootherC(d$x,d$y , xeval, bw, 3, EpaK)
cbind(x = xeval, fx, cuad0 = cuest$beta0, lp20 = lpest2$beta0,
lp30 = lpest3$beta0, cuad1 = cuest$beta1, lp21 = lpest2$beta1,
lp31 = lpest3$beta1)