equivKernel {locpol} | R Documentation |
Equivalent Kernel.
Description
Computes the Equivalent kernel for the local polynomial estimation.
Usage
equivKernel(kernel,nu,deg,lower=dom(kernel)[[1]],upper=dom(kernel)[[2]],
subdivisions=25)
Arguments
nu |
Orders of derivative to estimate. |
deg |
Degree of Local polynomial estimator. |
kernel |
Kernel used to perform the estimation, see |
lower , upper |
Integration limits. |
subdivisions |
the maximum number of subintervals. |
Details
The definition of the Equivalent kernel for the local polynomial
estimation can be found in page 64 in Fan and Gijbels(1996). The
implementation uses computeMu
to compute matrix S
and then
returns a function object
Value
Returns a vector whose components are the equivalent kernel used to
compute the local polynomial estimator for the derivatives in nu
.
Author(s)
Jorge Luis Ojeda Cabrera.
References
Fan, J. and Gijbels, I. Local polynomial modelling and its applications\/. Chapman & Hall, London (1996).
See Also
Examples
## Some kernels and equiv. for higher order
## compare with p=1
curve(EpaK(x),-3,3,ylim=c(-.5,1))
f <- equivKernel(EpaK,0,3)
curve(f(x),-3,3,add=TRUE,col="blue")
curve(gaussK(x),-3,3,add=TRUE)
f <- equivKernel(gaussK,0,3)
curve(f(x),-3,3,add=TRUE,col="blue")
## Draw several Equivalent locl polynomial kernels
curve(EpaK(x),-3,3,ylim=c(-.5,1))
for(p in 1:5){
curve(equivKernel(gaussK,0,p)(x),-3,3,add=TRUE)
}
[Package locpol version 0.8.0 Index]