equivKernel {locpol} | R Documentation |
Equivalent Kernel.
Description
Computes the Equivalent kernel for the local polynomial estimation.
Usage
equivKernel(kernel,nu,deg,lower=dom(kernel)[[1]],upper=dom(kernel)[[2]],
subdivisions=25)
Arguments
nu |
Orders of derivative to estimate. |
deg |
Degree of Local polynomial estimator. |
kernel |
Kernel used to perform the estimation, see |
lower , upper |
Integration limits. |
subdivisions |
the maximum number of subintervals. |
Details
The definition of the Equivalent kernel for the local polynomial
estimation can be found in page 64 in Fan and Gijbels(1996). The
implementation uses computeMu
to compute matrix and then
returns a function object
Value
Returns a vector whose components are the equivalent kernel used to
compute the local polynomial estimator for the derivatives in nu
.
Author(s)
Jorge Luis Ojeda Cabrera.
References
Fan, J. and Gijbels, I. Local polynomial modelling and its applications\/. Chapman & Hall, London (1996).
See Also
Examples
## Some kernels and equiv. for higher order
## compare with p=1
curve(EpaK(x),-3,3,ylim=c(-.5,1))
f <- equivKernel(EpaK,0,3)
curve(f(x),-3,3,add=TRUE,col="blue")
curve(gaussK(x),-3,3,add=TRUE)
f <- equivKernel(gaussK,0,3)
curve(f(x),-3,3,add=TRUE,col="blue")
## Draw several Equivalent locl polynomial kernels
curve(EpaK(x),-3,3,ylim=c(-.5,1))
for(p in 1:5){
curve(equivKernel(gaussK,0,p)(x),-3,3,add=TRUE)
}
[Package locpol version 0.8.0 Index]