tlmrgpa {lmomco} | R Documentation |
Compute Select TL-moment ratios of the Generalized Pareto
Description
This function computes select TL-moment ratios of the Generalized Pareto distribution for defaults of \xi = 0
and \alpha = 1
. This function can be useful for plotting the trajectory of the distribution on TL-moment ratio diagrams of \tau^{(t_1,t_2)}_2
, \tau^{(t_1,t_2)}_3
, \tau^{(t_1,t_2)}_4
, \tau^{(t_1,t_2)}_5
, and \tau^{(t_1,t_2)}_6
. In reality, \tau^{(t_1,t_2)}_2
is dependent on the values for \xi
and \alpha
. If the message
Error in integrate(XofF, 0, 1) : the integral is probably divergent
occurs then careful adjustment of the shape parameter \kappa
parameter range is very likely required. Remember that TL-moments with nonzero trimming permit computation of TL-moments into parameter ranges beyond those recognized for the usual (untrimmed) L-moments.
Usage
tlmrgpa(trim=NULL, leftrim=NULL, rightrim=NULL,
xi=0, alpha=1, kbeg=-.99, kend=10, by=.1)
Arguments
trim |
Level of symmetrical trimming to use in the computations.
Although |
leftrim |
Level of trimming of the left-tail of the sample. |
rightrim |
Level of trimming of the right-tail of the sample. |
xi |
Location parameter of the distribution. |
alpha |
Scale parameter of the distribution. |
kbeg |
The beginning |
kend |
The ending |
by |
The increment for the |
Value
An R list
is returned.
tau2 |
A vector of the |
tau3 |
A vector of the |
tau4 |
A vector of the |
tau5 |
A vector of the |
tau6 |
A vector of the |
Note
The function uses numerical integration of the quantile function of the distribution through the theoTLmoms
function.
Author(s)
W.H. Asquith
See Also
Examples
## Not run:
tlmrgpa(leftrim=7, rightrim=2, xi=0, alpha=31)
tlmrgpa(leftrim=7, rightrim=2, xi=143, alpha=98) # another slow example
## End(Not run)
## Not run:
# Plot and L-moment ratio diagram of Tau3 and Tau4
# with exclusive focus on the GPA distribution.
plotlmrdia(lmrdia(), autolegend=TRUE, xleg=-.1, yleg=.6,
xlim=c(-.8, .7), ylim=c(-.1, .8),
nolimits=TRUE, nogev=TRUE, noglo=TRUE, nope3=TRUE,
nogno=TRUE, nocau=TRUE, noexp=TRUE, nonor=TRUE,
nogum=TRUE, noray=TRUE, nouni=TRUE)
# Compute the TL-moment ratios for trimming of one
# value on the left and four on the right. Notice the
# expansion of the kappa parameter space from k > -1.
J <- tlmrgpa(kbeg=-3.2, kend=50, by=.05, leftrim=1, rightrim=4)
lines(J$tau3, J$tau4, lwd=2, col=2) # RED CURVE
# Notice the gap in the curve near tau3 = 0.1
# Compute the TL-moment ratios for trimming of four
# values on the left and one on the right.
J <- tlmrgpa(kbeg=-1.6, kend=8, leftrim=4, rightrim=1)
lines(J$tau3, J$tau4, lwd=2, col=3) # GREEN CURVE
# The kbeg and kend can be manually changed to see how
# the resultant curve expands or contracts on the
# extent of the L-moment ratio diagram.
## End(Not run)
## Not run:
# Following up, let us plot the two quantile functions
LM <- vec2par(c(0,1,0.99), type='gpa', paracheck=FALSE)
TLM <- vec2par(c(0,1,3.00), type='gpa', paracheck=FALSE)
F <- nonexceeds()
plot(qnorm(F), quagpa(F, LM), type="l")
lines(qnorm(F), quagpa(F, TLM, paracheck=FALSE), col=2)
# Notice how the TLM parameterization runs off towards
# infinity much much earlier than the conventional
# near limits of the GPA.
## End(Not run)