tlmr2par {lmomco} | R Documentation |
Sample Trimmed L-moments to Fitted Distribution
Description
Parameter estimation of a distribution given initial estimate of the parameters of the distribution to the sample trimmed L-moment (TL-moment) using numerical optimization. Thought the TL-moments can be used with substantial depth into either tail and need not be symmetrically trimmed, the TL-moments do not appear as useful when substantial tail trimming is needed, say for mix population mitigation. Then censored or truncation methods might be preferred. The x2xlo
family of operations can be used for conditional left-tail truncation, which is not uncommon in frequency analyses of rail-tail interest water resources phenomena.
Usage
tlmr2par(x, type, init.para=NULL, trim=NULL, leftrim=NULL, rightrim=NULL, ...)
Arguments
x |
A vector of data values. |
type |
Three character (minimum) distribution type (for example, |
init.para |
Initial parameters as a vector |
trim |
Level of symmetrical trimming to use in the computations. Although |
leftrim |
Level of trimming of the left-tail of the sample, which should be left to |
rightrim |
Level of trimming of the right-tail of the sample, which should be left to |
... |
Other arguments to pass to the |
Value
An R list
is returned. This list should contain at least the following items, but some distributions such as the revgum
have extra.
type |
The type of distribution in three character (minimum) format. |
para |
The parameters of the distribution. |
text |
Optional material. If the solution fails but the optimization appears to converge, then this element is inserted into the list and the |
source |
Attribute specifying source of the parameters. |
rt |
The list from the |
init.para |
A copy of the initial parameters given. |
Author(s)
W.H. Asquith
References
Elamir, E.A.H., and Seheult, A.H., 2003, Trimmed L-moments: Computational Statistics and Data Analysis, v. 43, pp. 299–314.
See Also
Examples
# (1) An example to check that trim(0,0) should recover whole sample
the.data <- rlmomco(140, vec2par(c(3, 0.4, -0.1), type="pe3"))
wild.guess <- vec2par(c(mean(the.data), 1, 0), type="pe3")
pe3whole <- lmom2par(lmoms(the.data), type="pe3")
pe3trimA <- tlmr2par(the.data, "pe3", init.para=wild.guess, leftrim=0, rightrim=0)
pe3trimB <- tlmr2par(the.data, "pe3", init.para=wild.guess, leftrim=10, rightrim=3)
message("PE3 parent = ", paste0(pe3whole$para, sep=" "))
message("PE3 whole sample = ", paste0(pe3whole$para, sep=" "))
message("PE3 trim( 0, 0) = ", paste0(pe3trimA$para, sep=" "))
message("PE3 trim(10, 3) = ", paste0(pe3trimB$para, sep=" ")) #
# (2) An example with "real" outliers
FF <- lmomco::nonexceeds(); qFF <- qnorm(FF); type <- "gev"
the.data <- c(3.064458, 3.139879, 3.167317, 3.225309, 3.324282, 3.330414,
3.3304140, 3.340444, 3.357935, 3.376577, 3.378398, 3.392697,
3.4149730, 3.421604, 3.424882, 3.434569, 3.448706, 3.451786,
3.4517860, 3.462398, 3.465383, 3.469822, 3.491362, 3.501059,
3.5224440, 3.523746, 3.527630, 3.527630, 3.531479, 3.546543,
3.5932860, 3.597695, 3.600973, 3.614897, 3.620136, 3.660865,
3.6848450, 3.820858, 4.708421)
the.data <- sort(the.data) # though already sorted, backup for plotting needs
# visually, looks like 4 outliers to the left and one outlier to the right
# perhaps the practical situation is that we do not wan the left tail to
# mess up the right when fitting a distribution because maybe the practical
# aspects are the that right tail is of engineering interest, but then we
# have some idea that the one very large event is of questionable suitability
t1 <- 4; t2 <- 1 # see left and right trimming and then estimation parameters
whole.para <- lmom2par(lmoms(the.data), type=type)
trim.para <- tlmr2par(the.data, type, init.para=whole.para, leftrim=t1, rightrim=t2)
n <- length(the.data)
cols <- rep(grey(0.5), n)
pchs <- rep(1, n)
if(t1 != 0) {
cols[ 1 :t1] <- "red"
cols[(n-t2+1):n ] <- "purple"
}
if(t2 != 0) {
pchs[ 1 :t1] <- 16
pchs[(n-t2+1):n ] <- 16
}
plot( qFF, qlmomco(FF, whole.para), type="l", lwd=2, ylim=c(3.1,4.8),
xlab="Standard normal variate",
ylab="Some phenomena, log10(cfs)")
lines(qFF, qlmomco(FF, trim.para), col=4, lwd=3)
points(qnorm(pp(the.data)), sort(the.data), pch=pchs, col=cols)
legend("topleft", c("L-moments",
paste0("TL-moments(", t1, ",", t2,")")), bty="n",
lty=c(1,1), lwd=c(2,3), col=c(1,4))
# see the massive change from the whole sample to the trim(t1,t2) curve