quawei {lmomco} | R Documentation |
Quantile Function of the Weibull Distribution
Description
This function computes the quantiles of the Weibull distribution given parameters (\zeta
, \beta
, and \delta
) computed by parwei
. The quantile function is
x(F) = \beta[- \log(1-F)]^{1/\delta} - \zeta \mbox{,}
where x(F)
is the quantile for nonexceedance probability F
,
\zeta
is a location parameter, \beta
is a scale parameter, and \delta
is a shape parameter.
The Weibull distribution is a reverse Generalized Extreme Value distribution. As result, the Generalized Extreme Value algorithms are used for implementation of the Weibull in lmomco. The relations between the Generalized Extreme Value distribution parameters (\xi
, \alpha
, \kappa
) are
\kappa
) is \kappa = 1/\delta
,
\alpha = \beta/\delta
, and
\xi = \zeta - \beta
.
These relations are taken from Hosking and Wallis (1997).
In R, the quantile function of the Weibull distribution is qweibull
. Given a Weibull parameter object p
, the R syntax is qweibull(f, p$para[3], scale=p$para[2]) - p$para[1]
. For the current implementation for this package, the reversed Generalized Extreme Value distribution quagev
is used and the implementation is -quagev((1-f),para)
.
Usage
quawei(f, para, paracheck=TRUE)
Arguments
f |
Nonexceedance probability ( |
para |
|
paracheck |
A logical controlling whether the parameters are checked for validity. Overriding of this check might be extremely important and needed for use of the quantile function in the context of TL-moments with nonzero trimming. |
Value
Quantile value for nonexceedance probability F
.
Author(s)
W.H. Asquith
References
Hosking, J.R.M., and Wallis, J.R., 1997, Regional frequency analysis—An approach based on L-moments: Cambridge University Press.
See Also
cdfwei
, pdfwei
, lmomwei
, parwei
Examples
# Evaluate Weibull deployed here and within R (qweibull)
lmr <- lmoms(c(123,34,4,654,37,78))
WEI <- parwei(lmr)
Q1 <- quawei(0.5,WEI)
Q2 <- qweibull(0.5,shape=WEI$para[3],scale=WEI$para[2])-WEI$para[1]
if(Q1 == Q2) EQUAL <- TRUE
# The Weibull is a reversed generalized extreme value
Q <- sort(rlmomco(34,WEI)) # generate Weibull sample
lm1 <- lmoms(Q) # regular L-moments
lm2 <- lmoms(-Q) # L-moment of negated (reversed) data
WEI <- parwei(lm1) # parameters of Weibull
GEV <- pargev(lm2) # parameters of GEV
F <- nonexceeds() # Get a vector of nonexceedance probs
plot(pp(Q),Q)
lines(F,quawei(F,WEI))
lines(F,-quagev(1-F,GEV),col=2) # line over laps previous