| quatri {lmomco} | R Documentation |
Quantile Function of the Asymmetric Triangular Distribution
Description
This function computes the quantiles of the Asymmetric Triangular distribution given parameters (\nu, \omega, and \psi) of the distribution computed by partri. The quantile function of the distribution is
x(F) = \nu + \sqrt{(\psi - \nu)(\omega - \nu)F}\mbox{,}
for F < P,
x(F) = \psi - \sqrt{(\psi - \nu)(\psi - \omega)(1-F)}\mbox{,}
for F > P, and
x(F) = \omega\mbox{,}
for F = P
where x(F) is the quantile for nonexceedance probability F, \nu is the minimum, \psi is the maximum, and \omega is the mode of the distribution and
P = \frac{(\omega - \nu)}{(\psi - \nu)}\mbox{.}
Usage
quatri(f, para, paracheck=TRUE)
Arguments
f |
Nonexceedance probability ( |
para |
|
paracheck |
A logical controlling whether the parameters are checked for validity. Overriding of this check might be extremely important and needed for use of the quantile function in the context of TL-moments with nonzero trimming. |
Value
Quantile value for nonexceedance probability F.
Author(s)
W.H. Asquith
See Also
cdftri, pdftri, lmomtri, partri
Examples
lmr <- lmoms(c(46, 70, 59, 36, 71, 48, 46, 63, 35, 52))
quatri(0.5,partri(lmr))