quatri {lmomco} | R Documentation |
Quantile Function of the Asymmetric Triangular Distribution
Description
This function computes the quantiles of the Asymmetric Triangular distribution given parameters (\nu
, \omega
, and \psi
) of the distribution computed by partri
. The quantile function of the distribution is
x(F) = \nu + \sqrt{(\psi - \nu)(\omega - \nu)F}\mbox{,}
for F < P
,
x(F) = \psi - \sqrt{(\psi - \nu)(\psi - \omega)(1-F)}\mbox{,}
for F > P
, and
x(F) = \omega\mbox{,}
for F = P
where x(F)
is the quantile for nonexceedance probability F
, \nu
is the minimum, \psi
is the maximum, and \omega
is the mode of the distribution and
P = \frac{(\omega - \nu)}{(\psi - \nu)}\mbox{.}
Usage
quatri(f, para, paracheck=TRUE)
Arguments
f |
Nonexceedance probability ( |
para |
|
paracheck |
A logical controlling whether the parameters are checked for validity. Overriding of this check might be extremely important and needed for use of the quantile function in the context of TL-moments with nonzero trimming. |
Value
Quantile value for nonexceedance probability F
.
Author(s)
W.H. Asquith
See Also
cdftri
, pdftri
, lmomtri
, partri
Examples
lmr <- lmoms(c(46, 70, 59, 36, 71, 48, 46, 63, 35, 52))
quatri(0.5,partri(lmr))