| quakap {lmomco} | R Documentation |
Quantile Function of the Kappa Distribution
Description
This function computes the quantiles of the Kappa distribution given parameters (\xi, \alpha, \kappa, and h) computed by parkap. The quantile function is
x(F) = \xi + \frac{\alpha}{\kappa}\left(1-{\left(\frac{1-F^h}{h}\right)}^\kappa\right) \mbox{,}
where x(F) is the quantile for nonexceedance probability F, \xi is a location parameter, \alpha is a scale parameter, \kappa is a shape parameter, and h is another shape parameter.
Usage
quakap(f, para, paracheck=TRUE)
Arguments
f |
Nonexceedance probability ( |
para |
|
paracheck |
A logical controlling whether the parameters are checked for validity. Overriding of this check might be extremely important and needed for use of the quantile function in the context of TL-moments with nonzero trimming. |
Value
Quantile value for nonexceedance probability F.
Author(s)
W.H. Asquith
References
Hosking, J.R.M., 1994, The four-parameter kappa distribution: IBM Journal of Reserach and Development, v. 38, no. 3, pp. 251–258.
Hosking, J.R.M., and Wallis, J.R., 1997, Regional frequency analysis—An approach based on L-moments: Cambridge University Press.
See Also
cdfkap, pdfkap, lmomkap, parkap
Examples
lmr <- lmoms(c(123,34,4,654,37,78,21,32,231,23))
quakap(0.5,parkap(lmr))