quakap {lmomco} | R Documentation |
Quantile Function of the Kappa Distribution
Description
This function computes the quantiles of the Kappa distribution given parameters (\xi
, \alpha
, \kappa
, and h
) computed by parkap
. The quantile function is
x(F) = \xi + \frac{\alpha}{\kappa}\left(1-{\left(\frac{1-F^h}{h}\right)}^\kappa\right) \mbox{,}
where x(F)
is the quantile for nonexceedance probability F
, \xi
is a location parameter, \alpha
is a scale parameter, \kappa
is a shape parameter, and h
is another shape parameter.
Usage
quakap(f, para, paracheck=TRUE)
Arguments
f |
Nonexceedance probability ( |
para |
|
paracheck |
A logical controlling whether the parameters are checked for validity. Overriding of this check might be extremely important and needed for use of the quantile function in the context of TL-moments with nonzero trimming. |
Value
Quantile value for nonexceedance probability F
.
Author(s)
W.H. Asquith
References
Hosking, J.R.M., 1994, The four-parameter kappa distribution: IBM Journal of Reserach and Development, v. 38, no. 3, pp. 251–258.
Hosking, J.R.M., and Wallis, J.R., 1997, Regional frequency analysis—An approach based on L-moments: Cambridge University Press.
See Also
cdfkap
, pdfkap
, lmomkap
, parkap
Examples
lmr <- lmoms(c(123,34,4,654,37,78,21,32,231,23))
quakap(0.5,parkap(lmr))